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RESUMO

Neste trabalho veremos os principais aspectos por trds da formulagdo do Modelo de Glashow-
Weinberg-Salam (GWS), responsével por descrever duas das quatro interagdes fundamentais da Natu-
reza no Modelo Padrdo da Fisica de Particulas: a interagcdo eletromagnética e a interagdo nuclear fraca.
Em primeiro lugar, apds um breve resumo de resultados importantes do Eletromagnetismo, veremos
a formulagdo geral das Teorias de Gauge ndo-Abelianas (Teorias de Yang-Mills), empregadas na for-
mulagdo do Modelo Padrdao. Em seguida, discutiremos o conceito de Quebra Espontanea de Simetria
(QES) e demonstraremos o importante Teorema de Nambu-Goldstone, relacionado ao surgimento
de “particulas fantasma” de massa nula denominadas bésons de Nambu-Goldstone. Consideraremos
depois o fendmeno da QES no contexto de uma Teoria de Gauge qualquer, demonstrando assim, no
caso geral, o famoso Mecanismo de Higgs. Feito isso, discutiremos a violagdo da paridade pela
interacdo nuclear fraca e a sua relagdo com os conceitos de quiralidade e espinores de Weyl. Por fim,
juntando todos esses elementos, faremos a formulagao do GWS no setor leptonico do Modelo Padrao
discutindo, em particular, as correntes carregadas e neutras da interacdo fraca, os bosons intermedia-
rios correspondentes, o Mecanismo de Higgs e o ilustre béson de Higgs, os termos de massa para os

campos de gauge, o acoplamento de Yukawa e com isso a origem das massas dos 1éptons carregados.

Palavras-chave: Teoria Eletrofraca. Teorias de Gauge nao-Abelianas. Mecanismo de Higgs.
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I Introdugao

O Modelo de Glashow-Weinberg-Salam (GWS) € a teoria que descreve, de maneira unificada,
duas das quatro interagdes fundamentais da Natureza no Modelo Padrao da Fisica de Particulas: as in-
teracoes eletromagnética e nuclear fraca, razao pela qual recebe também o nome de Teoria Eletrofraca.

Formulada na década de 60 pelos fisicos Sheldon Lee Glashow, Steven Weinberg e Abdus Salam
(e envolvendo ideias e resultados fundamentais de Chen Ning Yang, Robert Mills, Tsung-Dao Lee,
Chien-Shiung Wu, Yoichiro Nambu, Jefirey Goldstone, Peter Higgs, Francois Englert, Robert Brout,
Thomas Kibble e muitos outros, como veremos), a Teoria Eletrofraca conta com umarica histéria que se
iniciaem 1933 com a primeira descri¢ao da interacdo fraca por Enrico Fermi e culmina, com o Modelo
GWS, na unificagdo da mesma com o eletromagnetismo, algo certas vezes comparado a unificacio
das interacdes elétricas e magnéticas por Oersted, Faraday e Maxwell cerca de 100 anos antes.

Tao ricos quanto a sua histdria, entretanto, sao os conceitos e resultados fisicos empregados
na sua formulagdo. Mais especificamente, 0 Modelo GWS € uma Teoria de Gauge ndo-Abeliana
(ou Teoria de Yang-Mills) do grupo SU(2);, ® U(1)y com a simetria espontaneamente quebrada e
a massa dos bdsons de gauge gerada pelo Mecanismo de Higgs, o qual é também responsavel por
eliminar da teoria os indesejados bésons de Nambu-Goldstone que surgem com a quebra da simetria.
Além disso, a interagcdo fraca apresenta um comportamento surpreendente e Uinico entre as quatro
interacoes fundamentais: os seus processos violam a paridade, e na formula¢ao do Modelo isso se da
pelo acoplamento de férmions quirais (descritos por espinores de Weyl) aos campos de gauge.

Todos esses conceitos e resultados, descobertos e elaborados pelos diversos fisicos citados
acima, possuem enorme relevancia e importancia fisica por si s6. Sendo assim, e visando também dar
uma nocao do desenvolvimento histérico por trds do Modelo GWS, faremos ao longo desse trabalho

uma breve apresentag¢do de cada um dos conceitos do pardgrafo anterior.



2 Simetrias e interacdes fundamentais
2.1 O Eletromagnetismo como uma teoria de gauge do U(1)

A Eletrodinamica Cldéssica, cuja formulagdo final foi alcancada com as Equacdes de Maxwell
e a Forca de Lorentz na segunda metade do século XIX, é uma teoria muito bem estabelecida para a
interacao eletromagnética, que no regime quantico (de campos) do Modelo Padrao € generalizada para
a chamada Eletrodindmica Quantica (QED), uma das teorias mais bem sucedidas de toda a Fisica.

Um dos seus resultados mais fundamentais relaciona-se com a estrutura de grupo do Eletro-
magnetismo, obtido do fato da teoria ser invariante por transformacdes locais de fase. Na QED, esse
resultado € deduzido, uma consequéncia das leis (empiricas!) de Maxwell e Lorentz, mas no Modelo
Padrio ele pode ser tomado como um principio e ser generalizado na esperanca de se obter uma des-

cricdo das demais forcas fundamentais. Fagamos entdo um rdpido resumo sobre essas ideias da QED.

Comecamos com a Lagrangeanal! para um campo fermidnico livre (de spin 1/2):

Lo = ihepy" 0, — mepy (D
guardando, por exemplo, o campo de matéria referente a um par elétron-pdsitron (livre, inicialmente).
Para introduzir a interacao eletromagnética, retomamos o chamado acoplamento minimal?:
. q _
Oy — 0, + Z%AM com A* = (¢, A) )
onde ¢ e A sdo os potenciais usuais do Eletromagnetismo e ¢ a carga elétrica do férmion em questao.
Sendo assim, retomando a Lagrangeana livre (1), temos que o acoplamento do campo eletromag-
nético A, ao campo de matéria (ou seja, a introducdo da interacdo eletromagnética para esse campo)
pode ser feito trocando-se as derivadas de acordo com a equacao (2) acima, de forma que obtemos:
o . q 9
L — bt (au + %AM) b — mP 3)
Abrindo-se essa equagdo, obtemos o termo livre do campo ¢ dado por (1) e uma 4-corrente
J* = qiby*4 acoplada ao campo eletromagnético A, que, portanto, corresponde a um termo de intera-
¢do para esses dois campos. Vemos que a equagdo (2) realmente introduz a interacao eletromagnética.

Agora, consideremos as chamadas transformacoes de gauge do 4-potencial dadas por:
A, — A, +0,0 com  a=ax) “4)

onde o € uma funcdo qualquer (bem comportada) do espaco-tempo. Com essa transformagao, é
introduzido em (3) um termo adicional que, na extremizag¢do em relacdo aos campos de matéria da

acdo correspondente, segue para as equagoes de movimento alterando assim a dindmica dos campos.

! Adotaremos a pratica comum da literatura e usaremos apenas “Lagrageana” ao invés de “densidade Lagrangeana”.
2 Aqui e em tudo que segue, utilizaremos unidades do CGS e p = diag(+1, —1, —1, —1) paraa métrica do espago-tempo.
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A maneira de eliminar esse problema € introduzindo alguma transformacdo para os campos
de matéria ¢ e 1 de forma que o primeiro termo de .’ acima fique invariante. No caso, isso pode
ser feito generalizando-se a invariancia por transformacdes globais de fase observada em (1) e impondo

que essas transformagdes sejam locais, com uma fase v = «(z) a mesma fungéo que aparece em (4):

) — exp (—i%a) v, Y —exp <i%a> v com  «a=a(r) (5)

Como 1) — 11 por essas transformacdes, na equacdo (3) obtemos que .Z’ — £’ e portanto

concluimos que as transformagdes acima correspondem a uma simetria interna® do Eletromagnetismo.

Para terminar esse resumo, lembramos que a Lagrangeana em (3) ainda ndo € toda a histdria.

Precisamos adicionar um termo cinético para o campo eletromagnético, e o termo que se usa é exa-
tamente aquele da teoria cldssica, de forma que a Lagrangeana completa da QED fica dada por:

1 g = . q —
ZLapn = =7 Fu P + iy (O, +iz- A )= mPy com B = 0,4, = 0,4, (6)
Vemos que cada termo dessa Lagrangeana € invariante pelas transformacdes simultaneas (4) e

(5), inclusive o tensor dos campos F,, visto que estamos considerando vélido que 9,0, = 0,0, .

Portanto, das leis empiricas de Maxwell e Lorentz, obtemos a teoria acima que apresenta uma
simetria interna por transformagdes locais de fase as quais, pela equacdo (5), correspondem a atuacao
de matrizes 1x 1 (niimeros!) complexas e unitdrias sobre 1 e 1. Sendo assim, na QED vemos que os
campos de matéria transformam por uma representacdo# do grupo U(1), e portanto dizemos que o
Eletromagnetismo € uma teoria de gauge desse grupo de simetria. A seguir, discutiremos o que isso

significa, e como tudo o que foi apresentado acima se generaliza ao considerarmos outros grupos.
2.2 O principio de gauge e as teorias de Yang-Mills

Na se¢do anterior, partimos de resultados conhecidos do Eletromagnetismo e obtemos a simetria
por transformagdes locais de fase, ou a chamada simetria de gauge dessa interacdo. Agora, nao conhe-
cemos as interagdes que esperamos descrever, e portanto consideramos (uma representacdo) de um
grupo de simetria e empregamos o acoplamento minimal para obter a forma da interacdo. O grupo de
simetria considerado € o chamado grupo de gauge e a estratégia de se introduzir a intera¢do fundamental
pela imposi¢do de uma simetria (local) leva o nome de principio minimal ou principio de gauge.

Baseando-se na QED, a generalizagdo € direta: comecamos com um multipleto de campos de

matéria fermidnicos3 (de spin 1/2) que transformam por alguma representacido R de um grupo G:

3Esse termo € utilizado para diferenciar a simetria encontrada das simetrias (externas) do espago-tempo.

4Aqui € importante salientar que os campos de matéria irdo transformar por alguma representagdo do grupo de simetria
considerado, o que é importante pois, como ficard claro, campos de matéria transformando por diferentes representacoes
de um mesmo grupo de gauge (a ser propriamente definido na préxima secio) dardo origem a teorias fisicas distintas.

5Tudo o que faremos daqui em diante pode ser analogamente formulado para multipletos de campos bosonicos.
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(20
v=1 com Y — R(g)vY (7
Yy

onde R(g) é uma matriz quadrada N x N, que representa o elemento g do grupo G e atua sobre o0s v;
de 1) (onde cada v); por sua vez € um espinor de Dirac de 4 componentes). Inicialmente, supomos que
1 — R(g)® é uma simetria global da Lagrangeana livre, % , desses campos, e considerando-se
por exemplo o seu termo cinético , ihc@y”@,ﬂ/) , a invariancia pela transformagdo acima implica
que R deve ser uma representagdo unitdria: R7(g) = R~'(g). Sobre o termo de massa para os
campos considerados, escreveremos apenas %, , que podera ser nulo indicando campos sem massa
ou ndo-nulo indicando campos massivos. De qualquer forma, supomos que esse termo seja invariante.

Sendo assim, aplicamos o principio de gauge: impomos a simetria de .% quando a transforma-
¢ao em (7) é feita local e portanto, de maneira andloga ao que foi feito em (2), trocamos as derivadas

0,, pela chamada derivada covariante definida abaixo, que envolve a introdug@o do termo R(A,,):

D, =0, +ieR(A,) com A, —gA,g "+ é(au )g ! 8)

onde e € a constante de acoplamento de gauge e a segunda eq. € a forma como A,, deve transformar
para que, em conjunto com a transformacao em (7), o termo cinético da Lagrangeana seja invariante.®
Uma coisa importante a respeito das transformagdes (locais) em (7) € que as mesma, feitas
ponto a ponto no espago-tempo, ndo podem introduzir descontinuidades nos campos de matéria, o que
indica, entdo, que devemos ter um continuo suave de elementos de G. Além disso, como esses ele-
mentos serdo diferenciados conforme o resultado acima, obtemos que os mesmos devem formar uma
variedade diferencidvel, e portanto concluimos que o grupo de gauge G deve ser um grupo de Lie.”
Feita essa observacao, € possivel demonstrar (usando o mapeamento exponencial, por exemplo,
que relaciona os geradores T, da dlgebra com os elementos do grupo através de g(x) = exp(iw®(x)Ty,))
que o termo (i/e)(d,g)g"' na equagdo acima é um elemento da dlgebra (de Lie) G do grupo G e,
portanto, que o proprio A, € G, podendo entdo ser escrito como A, = AT, . Em particular, temos
que a representacdo R dos elementos do grupo € transferida para os elementos da algebra, de forma
que na verdade temos R(A,) = AfR(T,), o que explica o uso do R na derivada covariante em (8).
No caso, uma vez que a derivada covariante atua sobre os campos de matéria, deixamos explicita a
notacdo R visto que, como jd dito, a representagdo empregada tem influéncia direta sobre a Fisica do
problema. Por outro lado, para a transformagdo do elemento A, dada em (8), temos que se trata de
um resultado na dlgebra G, valido em qualquer representacio, e portanto deixamos os R’s implicitos.

Em tudo o que segue, empregaremos essa mesma ldgica no uso explicito ou nio da representacao R.

SEm particular, substituindo os elementos de U (1) dados em (5) obtemos a transformagio (4) do Eletromagnetismo!
"Demonstra-se também (4) que G deve ser compacto e ter dlgebra semisimples, mas ndo entraremos nesses detalhes.
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Portanto, a intera¢do fundamental fica introduzida na teoria pelo uso da derivada covariante defi-
nida em (8), que faz o acoplamento dos campos de matéria a n = dim G campos de gauge Aj através
das matrizes R(7T,) (os geradores da dlgebra de Lie na representagdo R do grupo de gauge). No mo-
delo GWS, G = SU(2);, ® U(1)y e portanto temos dim G = 4 campos de gauge, que correspondem
aos 3 bésons W+ e ZY e ao foton, as particulas mediadoras das interagdes fraca e eletromagnética.

Dada a introducdo dos campos A? , precisamos adicionar a Lagrangeana da teoria os termos
proprios desses campos. Na QED, isso foi feito através da equacgao (6). Aqui, por generalizagdo do
caso eletromagnético, e percebendo na verdade (no contexto da geometria diferencial, que nio abor-
daremos aqui) que o termo A, introduzido na derivada covariante se trata de uma conexdo, temos que
o tensor dos campos F),, € definido como a curvatura dessa conexao, e fica dado pelo comutador de

derivadas covariantes [D,,, D, | = ieR(F},,) . Assim, utilizando (8), obtemos que:

E,=0,A,-0,A,+ielA,,A)] com F,, — gF,g" 9)

onde a segunda equagdo acima € a maneira como F),,, transforma, em conjunto com (7) e (8).8 Como
discutido, A,, € G . Sendo assim, demonstra-se (3) que [4,,, A,| € G e, portanto, pela equagdo acima,
obtemos que F},, € G . Dessa forma, deixando a notagdo explicita, temos que R(F),,) = F,;, R(T,).
Como pode ser verificado, os operadores D, definidos em (8) satisfazem a Identidade de Jacobi:
[Dx,[Dy, D)+ [Dy,[Dx,D,)] +[Dy,[Dy,Dy]] =0 e, como [D,,D,] =ieR(F,,),definindo a
derivada covariante do tensor dos campos como Dy F},, = O\F),,+ie[Ay, F,,| = [Dy, F,,|, obtemos:

DAFuV+DVFAu+DuFuA =0 onde DAF/“/ = aAFu,,+ie[A>\,FW] (10)

que € a chamada Identidade de Bianchi, satisfeita para qualquer tensor dos campos F,,, definido em (9).
Por fim, por generalizacio do termo introduzido na equacdo (6) da QED, adicionamos o termo

préoprio dos campos de gauge de forma que a Lagrangeana completa da teoria fica dada por:

1 _
¥ = - Tr (F,, F*) + ihepy" Dy + Ly (11)

com D, a derivada covariante definida em (8) e £, o termo de massa dos campos de matéria.

Extremizando em relagéo aos campos Ay, a agdo correspondente a Lagrangeana acima obtemos:

(D, F*™), =JY com J!=ehcpy'R(T,)¢ (12)

onde foi utilizado que D, F** = (D,F" )" T, e as 4-correntes J (temos n = dim G delas) sdo obti-

das na extremizacio expandindo-se a derivada covariante em ihici)y” D,y + Ly = Ly — JV AL 0
Por fim, perceba que no caso da QED, uma teoria de gauge Abeliana com dimG = 1, os

comutadores que aparecem nas equacgoes acima se anulam. Dessa forma, as Equacoes de Yang-Mills

em (12) e a identidade de Bianchi em (10) tornam-se, respectivamente, os conhecidos resultados

8Em particular, no caso Abeliano [4,,, A,] = 0e gF,, g~' = F},, de forma que recuperamos os resultados da QED!
°No caso, D, F" € G pois D, F" = O\F),, +ie[Ax, F,,]e, comovimos, Ay € G, F,, € G = [A\,F.]|€G.
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O " = J" e O\F, + 0, F\, + 0,F,» = 0 do Eletromagnetismo. De fato, as equagdes (12) e (10)

acima constituem nas teorias de gauge o andlogo das equagdes de Maxwell (em sua forma diferencial)!

Obtemos assim, no contexto de campos de matéria fermidnicos, a formulagdo geral das teorias
de gauge que estdo por trés das trés interagdes fundamentais do Modelo Padrao da Fisica de Particulas!

As teorias de gauge nao-Abelianas foram formuladas pela primeira vez por Chen Ning Yang
e Robert Mills em 1954 (16) e por isso levam também o conhecido nome de Teorias de Yang-Mills.
Em uma tentativa de descrever a interagdo forte, Yang e Mills consideraram uma ideia introduzida por
Heisenberg em 1932 de que o préton e o néutron seriam dois estados (isospin up e isospin down) de um
ente mais fundamental chamado niicleon (8). Visto que a teoria correspondente € invariante por trans-
formagdes globais na representacao dubleto do SU (2), Yang e Mills basearam-se na QED e impuseram
que a teoria fosse invariante por transformacdes locais, da mesma forma que fizemos acima. Entretan-
to, o modelo de Yang e Mills para a interacao forte nao deu frutos principalmente pelo fato da simetria
de isospin ndo ser uma simetria exata dessa interagao. Prétons e néutrons sdo particulas distintas e, na
verdade, estados ligados de outras particulas (essas sim fundamentais) chamadas quarks. A descri¢ao

correta para as interagdes fortes é uma teoria de gauge na representag@o tripleto do SU(3)¢ .

Algo que poderfamos pensar em introduzir na Lagrangeana (11) € um termo de massa para os
campos de gauge Af, que, se tratando de campos vetorias (de spin 1)'°, nos leva a considerar (a menos
de constantes) a quantidade m? Tr(A, A*). Entretanto, devido a forma como A, transforma, temos
que esse termo ndo € invariante de gauge e, em razdo do fator ndo-homogéneo na equacgao (8), nao ha
termo que seja. A conclusdo € que a teoria que acabamos de formular sé € capaz de introduz campos
de gauge sem massa, o que estd em sério desacordo com a interagio fraca visto que os bésons W= e
Z" tém (muita) massa: um tnico béson 1V tem massa correspondente a aproximadamente 85 prétons!

Portanto, se a simetria de gauge realmente for algo fundamental na descri¢do das interacdes do
Modelo Padrao, deve existir na Natureza algum mecanismo que, no contexto das teorias de gauge, de
onde os campos A}, “nascem” sem massa, quebre (espontaneamente) a simetria e forne¢a massa para

os mesmos. Esse mecanismo existe e tem nome: no modelo GWS ele é o famoso Mecanismo de Higgs.

1°No caso, os campos de gauge Aj, sdo 4-vetores, que transformam pela representag@o vetorial do grupo de rotagdes e,
portanto, sdo campos (vetoriais) de spin 1. Dessa forma, como as particulas correspondentes sdo bdsons, as particulas
mediadoras das interagdes fundamentais associadas aos campos de gauge sdo comumente chamadas de bdsons de gauge.
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3 Quebra espontanea de simetria

3.1 O Teorema de Nambu-Goldstone

O mecanismo de Higgs consiste na aplicacao do fenomeno da quebra espontinea de simetria
(QES) a uma teoria de gauge, que apresenta simetria local. Entretanto, importantes aspectos e resulta-
dos desse fendmeno, como o Teorema de Nambu-Goldstone, sao obtidos no contexto de uma teoria com
simetria (continua) global, e portanto, deixemos o caso das simetrias de gauge para a proxima sec¢ao.

Dessa vez, comecamos com um multipleto de campos escalares complexos ¢; , que sao campos

de matéria bosdnicos (de spin 0)!!, que transformam por alguma representacdo R de um grupo G:

$1
o= : com ¢ — R(g)¢ (13)
N

A hipétese central da QES € que a Lagrangeana (livre) desses campos, invariante pela transfor-
magcao global acima, apresente um termo de potencial que dé origem a estados de vicuo (estados de

menor energia) ¢y # 0. Um exemplo de grande importancia, como veremos, € o seguinte:

2
2y = (0,0)/(06) = V(16]") = (0,0)!(@"6) + S|l — Jlol" (14)

onde 1 € 7 sdo constantes. No caso, obtém-se facilmente que o minimo do potencial V (|¢|?) acima
ocorre para |¢o|> = p?/n, e sendo ||* = |p1]*+- - -+ |dn|* vemos que existem infinitas combinagdes
dos campos ¢; que fornecem estados de vacuo do sistema, e que as transformacdes em (13) levam
uma configuracdo de vicuo em outra visto que, pela invariancia de .%; , temos ¢'¢p — @' ¢.
Entretanto, uma outra caracteristica da QES € que na determinacdo das dinamicas provenientes
da Lagrangeana acima, onde sdo consideradas perturbagoes a partir de estados de vacuo do sistema, é
necessdrio escolher uma combinacdo especifica dos campos ¢; para realizar a perturbacdo. Portanto,
ao considerarmos excita¢des a partir de um estado de vacuo ¢, # 0, temos que a simetria do grupo G
¢ perdida visto que as suas transformacoes levardo esse estado de vdcuo em um outro. Eventualmente,
poderd acontecer que o ¢, escolhido ainda seja invariante por algum conjunto de transformacdes de
(7, e nesse caso dizemos que existe uma simetria residual na teoria, referente a um subgrupo Hy C G.
Sendo assim, a QES consiste no fato de que, por mais que a Lagrangeana da teoria apresente
uma determinada simetria, perturbagdes a partir de certos estados de vacuo nio irdo necessariamente,
e portanto, nesses casos, a simetria da teoria é quebrada espontaneamente pela dinamica dos campos
envolvidos. E uma ideia sitil, mas extremamente importante, introduzida no contexto da Fisica de

Particulas por Yoichiro Nambu em 1960, o que lhe rendeu o prémio Nobel em Fisica de 2008.

ICampos escalares (reais ou complexos) transformam, como o préprio nome indica, pela representacdo escalar do
grupo de rotagdes. Dessa forma, eles correspondem a particulas de spin 0 que, como sabemos, sdo bosons.
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Vejamos entdo as consequéncias desse fendmeno para os campos em (13). Considerando a trans-
formacao dada, temos que a variacao dos campos pode ser determinada utilizando o mapeamento expo-
nencial R(g) = exp(iw*R(T,)) =~ 1+iw*R(1,) ,deformaque 6¢; = R;;(g)p;—p; = iwR;;(To)p; .
Reescrevendo essa equagdo em termos dos 2/N campos independentes (reais) de ¢ , obtemos: dp; =
iw*R;;(T,)p; onde R;;(T,) é amatriz 2N x 2N correspondente a R;;(7;,) . Com isso, deduzimos:

oV = g—:;égoi =0 = g—:;iw“Rij(Ta)goj =0 = g—};nzj(Ta)% =0 (15
onde na primeira equacdo 6V = 0 pelo fato do potencial ser invariante pelas transformagdes em (13)
e o resultado final é obtido uma vez que a segunda equacdo deve ser vélida para todo w*.
Derivando o altimo resultado acima em relacao a ¢y, e aplicando a equagdo obtida em um estado
de vicuo ¢; = a; , para o qual a derivada primeira de V' se anula, chegamos no seguinte resultado:
0?V ov 0y, o0?V

———Ry(T.)p; + —Rij(Tu =0

= —— | Ri(T)a;=0 (16
D e Ipr0pi |, _, i(Ta)a; (16)

No caso, expandindo-se o potencial V' em série de Taylor, temos que o termo de massa para
os campos ¢; € identificado como o termo quadratico nos mesmos. Sendo assim, fica imediato que a
derivada segunda acima, a qual aparece justamente nesse termo na expansao de V/, corresponde a ma-
triz das massas (M?)y; , e portanto o resultado acima se escreve como: (M?);/R;;(T,)a; = 0.

Agora, consideremos o subgrupo de simetria Hy C G do estado de vacuo escolhido. Como
R(g)po = ¢o = 0¢p = 0, o resultado d¢; = iw*R;;(1,)p; da pagina anterior aplicado ao estado de
vécuo e reescrito em termos dos 2N campos reais ; fornece: R;;(71,)a; = 0, ou seja, os geradores
da dlgebra do subgrupo Hy C G aniquilam o vécuo, e portanto a equacdo (M?)y;R;;(T,)a; = 0 estd
automaticamente satisfeita indicando que nesse subgrupo, de maneira geral, (M?);; # 0. Por outro
lado, para as transformacdes de G que ndo preservam o vacuo nio serd mais valido que R;;(1,)a; = 0
e, portanto, a equagdo (M?),;/R;;(T,)a; = 0 implica que, fora de Hy C G, os autovalores de (M?);;
deverdo ser nulos. Logo, diagonalizando a matriz das massas obtemos que, nesse caso, (M?);; = 0.

Ou seja, da quebra espontinea da simetria global considerada obtemos dim GG — dim H, campos
reais de massa nula! As particulas associadas a esses campos sdo chamadas de bdsons de Nambu-

Goldstone, e esse resultado é o importante Teorema de Nambu-Goldstone, que fica enunciado como:

O Teorema de Nambu-Goldstone: Se uma teoria apresenta uma simetria (continua) global por
um grupo G e o estado de vicuo quebra espontaneamente essa simetria para um subgrupo Hy C G

entdo surgem dim G — dim H, bésons de Nambu-Goldstone (particulas de spin O e massa nula).

No modelo GWS, a introdug¢do de bésons de Nambu-Goldstone (NG) € problemadtica pois, ape-
sar do fato de que essas particulas seriam muito facilmente produzidas, ja que ndo possuem um gap de
massa, elas ndo sao observadas na Natureza. Entretanto, o teorema acima € vélido para simetrias glo-
bais, e o GWS € uma teoria com simetria local (de gauge). Portanto, vejamos agora qual o efeito da

QES sobre as teorias de gauge, onde os bosons de NG acima desempenhardo um papel importante.
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3.2 O Mecanismo de Higgs

Partindo das equacdes (13) e (14), a teoria de gauge correspondente € obtida impondo-se que
as transformacdes do grupo G sejam locais, de modo que as derivadas J,, que ocorrem em (14) devem
ser substituidas por derivadas covariantes D, , e adicionando-se o termo para os campos de gauge
da mesma forma que foi feito em (11). Dessa forma, o termo cinético da Lagrangeana fica dado por
(D,®)T(D*@) , onde fica feito o acoplamento dos campos de matéria aos campos Af.

Por conta desse acoplamento, um determinado estado de vicuo ¢, da nossa teoria de gauge, o
qual chamaremos de vdcuo de Higgs, ndo € mais aquele que satisfaz apenas 0,,¢p = 0 e que minimiza
o potencial V', da mesma forma que na secdo anterior. Agora, como temos interacdes com 0s campos
de gauge, que contribuem para a energia do sistema, os estados de vacuo devem satisfazer D,,¢g = 0.

Sendo assim, escolhido um vacuo de Higgs ¢, , empregamos a mesma notagao da se¢do anterior
e chamamos o grupo de simetria residual de ¢ , cujas transformagdes deixam esse vdcuo invariante, de
Hy C G. Em particular, empregando o resultado d¢ = iw®R(T,)¢ deduzido anteriormente, e usando
que ¢ = R(g)po — ¢o = 0 para as transformagdes de H, obtemos, da mesma forma que na se¢@o an-

terior, que R(T,)po = 0, ou seja, que os geradores da dlgebra de Hj, aniquilam o vdcuo de Higgs.

Uma vez que esperamos que as massas dos campos de gauge venham da interagdo com os campos
de matéria ¢; cujos estados de vacuo quebram espontaneamente a simetria de gauge, o termo de massa
para os A} deve vir do termo cinético (com interagio) (D, ¢)'(D"¢), até porque, além do termo
préprio dos campos de gauge, esse € o Unico lugar na Lagrangeana em que esses campos aparecem,

entdo o termo de massa s6 pode vir dai. Expandindo-se entdo o termo acima obtemos:

(D,0) (D" ¢) = (9,0)1(0"¢) + ie [(0,0) R(A*)¢ — ¢TR(A,)(0"9)] + 29" R(A,)R(A*)¢ (17)

e como o termo de massa para os campos de gauge deve ser quadritico em A® , concluimos que, na
perturbacdo a partir de um estado de vacuo ¢, que causa a QES, o resultado acima dard origem ao

termo de massa e2¢§ R(A,, ) R(A*)¢y , o qual pode ser reescrito de maneira mais clara como:

(M?)qp AG A (18)

e SUR(T2) R(Th) o A A" = %e% {R(T.), R(Th)} go A A =

N | —

onde (M?),;, é a matriz das massas dos campos de gauge e { R(T,), R(T})} denota o anti-comutador
dos geradores da dlgebra do grupo de gauge GG na representacdo R escolhida.!?

Em particular, lembremos que os geradores da élgebra do subgrupo de simetria aniquilam o
vécuo de Higgs: R(T,)¢o = 0. Portanto, no subespaco Hy , vemos que (M?),;, = 0 indicando que os

dim H, bdsons de gauge correspondentes ndo ganham massa. Isso na verdade era algo esperado pois se

2 Aqui, notamos que R(7T,)R(Tp) pode ser reescrito como metade do comutador [R(Ty), R(T})] mais metade do
anti-comutador {R(7,),R(Tp)}. Como a contragio de uma quantidade anti-simétrica (o comutador anterior) com
uma quantidade simétrica (o termo AfLA“’b) é zero, o termo com o comutador se anula e daf segue o resultado em (18).
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temos uma simetria de gauge residual, os bosons de gauge associados realmente ndo podem ter massa.
Por outro lado, para os geradores fora de Hy nao temos, de maneira geral, que R(7},)po = 0,
de forma que (M?),; # 0 indicando que os bésons de gauge correspondentes ganharam massa!
Além disso, veja algo de grande importancia: temos dim G —dim H bésons de gauge massivos,
exatamente o mesmo nimero de bosons de NG introduzidos pela QES! No caso, como particulas
massivas possuem um grau de liberdade a mais que as nao massivas, ja que ndo viajam na velocidade
da luz, temos que cada um dos dim G — dim H bésons de gauge devem ter adquirido um grau de
liberdade para se tornarem massivos, € aqui vem algo surpreendente do mecanismo de Higgs: esses
graus de liberdade s@o provenientes justamente dos dim G — dim H, bdésons de NG, que portanto
sdo absorvidos pelos bosons de gauge para gerar massa para os mesmos, sumindo da teoria! Em um
mecanismo genial, portanto, resolvemos tanto o problema da massa dos campos de gauge quanto o dos
indesejados (por nao serem observados na Natureza) bosons de NG que surgem na teoria com a QES!
Todavia, os campos ¢; adicionam particulas massivas que ndo serdao removidas da teoria, e que
portanto devem ser observadas na Natureza. No modelo GWS, como veremos, serdo introduzidos dois
campos complexos, dos quais trés de suas componentes reais, correspondentes a bésons de NG, se-
rio absorvidos pelos bésons W+ e Z° que portanto adquirem massa. O féton, sendo o béson de gauge
do subgrupo de simetria U(1) gy, , continua sem massa e, portanto, sobra um campo real massivo ¢
associado a uma particula descarregada®® de spin 0 a ser detectada em laboratério. Essa particula € o
famoso boson de Higgs, observada no LHC (Large Hadron Collider) em 2012, razdo pela qual Peter
Higgs e Francois Englert receberam o prémio Nobel em Fisica do ano seguinte, pela sua contribuicdo,

em 1964 (10) (2), na descoberta e desenvolvimento tedrico do mecanismo que acabamos de apresentar.

O que faremos agora € considerar mais uma quebra de simetria, dessa vez de uma simetria discre-
tado espaco-tempo: aparidade. Como mencionado na Introdugdo, essa é uma propriedade exclusivada

interagdo fraca, que portanto terd um papel importante na formulagdao do modelo GWS, como veremos.

3Um campo real, pelo Teorema de Noether, ndo conservaria a carga elétrica e, portanto, deve ser descarregado.
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4 Paridade e férmions quirais

4.1 Helicidade, quiralidade e os espinores de Weyl

A paridade diz respeito a transformacoes de inversdo espacial de um sistema fisico, que sendo
portanto da forma (z,y, z) — (—xz, —y, —z) vemos se tratar de transformagdes discretas. Até meados
do século XX, era tomado como um principio que todos os processos na Natureza seriam invariantes
por essas transformagdes, significando, por exemplo, que se nos for mostrado um trecho de um filme,
ndao h4 maneira de dizer se a cena € o que de fato aconteceu ou se ela foi invertida, refletida por um
espelho, digamos, uma vez que as duas situagdes seriam perfeitamente possiveis de serem observadas.

E uma ideia natural, intuitiva, e de fato amplamente verificada em diversas situagdes, mas,
em 1956 (11), Tsung-Dao Lee e Chen Ning Yang (o mesmo das Teorias de Yang-Mills) perceberam
que essa suposta simetria da Natureza ainda ndo havia sido verificada no caso das interacdes fracas e,
com uma ideia ousada de que certos aspectos dessa interacdo poderiam ser explicados por violacoes da
paridade, propuseram experimentos envolvendo certos processos fracos para esclarecer essas questoes.

Antes de prosseguirmos com o que foi descoberto, entretanto, vejamos alguns conceitos im-
portantes que serao utilizados nas discussoes que seguem, e particularmente na formulacdo do GWS.

Nas secoes anteriores fomos apresentados as particulas bosdnicas do Modelo Padrdo: os bésons
de gauge e o béson de Higgs. Além dessas, temos também particulas fermidnicas (de spin 1/2) que
estdo separadas em dois grupos, os [éptons e os quarks, que por sua vez estio divididos em trés familias
ou geragoes, com a diferencga entre duas geracoes sendo basicamente a massa das particulas. A primeira
familia dos 1éptons é formada pelo conhecido elétron e o seu neutrino associado, e a primeira familia
dos quarks é formada pelos quarks up e down, que compdem os prétons e néutrons, por exemplo.

Neste trabalho, lidaremos apenas com os 1éptons. Detalhes a respeito da introdugdo dos quarks
no modelo GWS podem ser encontrados naref. (4). De toda forma, a questao € que esses férmions serao
descritos pelos chamados espinores de Weyl, que estio relacionados ao importante conceito de gui-
ralidade de uma particula, que em certos casos se confunde com outra propriedade chamada helicidade.

A helicidade nada mais € que a projecao do spin da particula sobre a dire¢cao do seu vetor
momento. Com isso, para uma particula livre, temos que se trata de uma quantidade conservada.
Logo, suponhamos que a particula em questdo seja massiva, e que em um determinado referencial ela
tenha helicidade positiva. No caso, poderemos sempre fazer um boost para um referencial em que a
particula muda o sentido do seu movimento, e com isso a helicidade troca de sinal. Portanto, para
particulas massivas, a helicidade é uma constante de movimento mas nao € um escalar de Lorentz.
Para particulas sem massa, entretanto, temos que o boost anterior ndo € possivel pois a particula viaja
na velocidade da luz, e portanto a helicidade € tanto conservada quanto invariante de Lorentz.

A quiralidade, por outro lado, vem de uma defini¢do mais abstrata sendo dada como o autovalor

5 —

de ~v iv°y'v%y3. Aqui, adotaremos a base para as matrizes gama " (u = 0,1,2,3) (também

chamadas de matrizes de Dirac) dada na referéncia (1), de onde a matriz ° pode ser determinada.
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Sendo (7°)? = 1 obtemos que a quiralidade pode assumir os autovalores +1, e como pode ser de-
monstrado que +° comuta com todos os geradores do grupo de Lorentz na representagio espinorial, te-

mos que a quiralidade é sempre um escalar de Lorentz. Os autoestados de 7° podem ser dados por:

(1-7") 9 (19)

DN —

Y= (1) e yh=

onde V’yft = +pft e /5L = —pF . Esses sdo os chamados espinores de Weyl, que por serem o0s
autoestados da quiralidade correspondem a particulas denominadas férmions quirais (de spin 1/2).
Agora, precisamos dar alguma interpretacao para a quiralidade, que por enquanto se trata apenas
do autovalor da matriz 7°. No caso, manipulando-se a equagdo de Dirac, v*p,1) = mc1) , é possivel
chegarmos em X - p ¢ = 7° (E/c) 1 — (mc?/c) v°v%4 onde X é tal que S = (h/2) X seja o operador
de spin. Dessa forma, no limite de altas energias vemos que o resultado anterior se torna 3 - p ¢ ~
v° (E/c) v que na verdade pode ser escrito como (X - p/||p||) ¥ & 71 . Mas veja, o que aparece no
primeiro termo dessa expressao € justamente o operador helicidade, que portanto se confunde com o
operador quiralidade no limite de altas energias. E na verdade, se m = 0, o resultado anterior se torna
exato e portanto, para particulas sem massa, quiralidade e helicidade correspondem a mesma coisa!
Por fim, uma outra manipulacio da equacdo de Dirac fornece que Wpu@DR = mcyte 7“pu¢L =
me1® significando que, se m # 0, ¥® e T estdo acoplados de forma que a quiralidade ndo serd uma

quantidade conservada. Por outro lado, se m = 0, 1 e 9" se desacoplam e a quiralidade se conserva.
4.2 O experimento de Wu e a violagdo da paridade

Logo que as sugestdes de Lee e Yang foram publicadas, em 1956, um experimento liderado por
Chien-Shiung Wu, muitas vezes referida como Madame Wu, foi realizado com os seus resultados sen-
do publicados no inicio do ano seguinte (15). Nesse experimento, nicleos de *°Co foram alinhados
com seus spins apontando em uma determinada direcao. Sendo is6topos radioativos do Cobalto, esses
niicleos decaem pelo chamado decaimento beta, que é dado por n — p* + e~ + I, e se trata de um im-
portantissimo processo fraco (mediado pela interacdo fraca). Sem discutir aqui a enorme dificuldade
técnica do experimento, o que Madame Wu observou foi simplesmente que os elétrons provenientes
dos decaimentos beta sdo emitidos preferencialmente na dire¢do oposta a dos spins nucleares.

O que isso significa para a conservagao ou nao da paridade? Basta “refletir” esse experimento
por um espelho. Se no experimento em questdo os spins dos nicleos apontam “para cima”, de forma que
os elétrons sdo emitidos preferencialmente “para baixo”, no espelho os niicleos girarao no sentido con-
trario mas os elétrons continuarao sendo emitidos na mesma dire¢do. No espelho, portanto, os elétrons
sdo emitidos preferencialmente na mesma direcao dos spins nucleares, mas veja, isso ndo é observado
na Natureza! Obtemos entao que a interacao fraca viola a paridade, um comportamento tinico entre as

quatro interagdes fundamentais! Vejamos agora o que isso significa na formulacdo do modelo GWS.

4Nesse decaimento, n indica o néutron, p™ o préton, e~ o elétron € 77, a anti-particula do neutrino associado ao elétron.
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5 A formulagao do modelo GWS
5.1 Correntes carregadas e os 1€ptons de esquerda

Pela sua revoluciondria ideia, verificada experimentalmente por Madame Wu, Lee e Yang rece-
beram o prémio Nobel em Fisica de 1957. As consequéncias tedricas foram imediatas pois, uma vez
que a interacao fraca viola a paridade, tal comportamento deveria ser incorporado aos modelos que
tentavam descrevé-la. Em particular, determinados processos fracos conhecidos na época apontavam
para dois vértices fundamentais dessa interacao, um deles correspondendo ao processo e~ — v+ W™~
que, por conservagdo da carga elétrica, envolve uma particula intermedidaria carregada negativamente
chamada W~ , e o outro dado pelo processo contrdrio v, — e~ + W™ envolvendo outra particula
intermedidria carregada, dessa vez positivamente, chamada WW*. A notagdo ndo € coincidéncia, essas
particulas sdo de fato os bésons W= da interacdo fraca, que se acoplam as correntes carregadas.

Antes do advento das teorias de gauge, entretanto, o que se tinha era um modelo em que o termo
de interagdo da QED , J% A, = q@y”zﬁAu , que guarda o vértice fundamental dessa teoria, era gene-
ralizado para JAW " = Uiy, W e JIWE = Uy, YW I no caso da interagdo fraca'®, onde 1
refere-se ao espinor do elétron, do miion ou do tau (as particulas andlogas ao elétron nas outras duas
familias dos léptons) e 1), refere-se ao espinor do neutrino correspondente (da mesma familia de /).

Entretanto, lembremos de uma coisa importante: 1)*1) é um vetor de Lorentz, mas a violagio da
paridade de Lee e Yang nos leva agora a considerarmos também a quantidade 1"+, um pseudo-vetor
ou vetor axial, que ndo troca de orientacao por transformacdes de paridade, violando assim a mesma.
Com isso, chegou-se a conclusdo de que as correntes carregadas deveriam na verdade ser dadas pela
mistura entre uma parte vetorial e outra axial, da forma 17" (1 4 €7°) , e logo demonstrou-se experi-
mentalmente (8) que ¢ = —1, e portanto que as correntes carregadas assumiam a forma “V’ — A” dada
por J* = Yy (1 — "), e JI = Jw (1 — )1, . Esse modelo fenomenolégico para a interagdo
fraca, baseado nos termos de interagio JXW " e JL W com “correntes V — A”, ficou conhecido como

a Teoria dos Bésons Vetoriais Intermedidrios (BVI). Mais detalhes podem ser encontrados na ref. (12).

Um primeiro passo para a obtenc¢do de uma teoria de gauge pode ser feito notando-se que pode-
mos fazer ;7" (1—~°)1,, = 20Fy* L onde ¢* indica um espinor de Weyl (de esquerda, nesse caso).
Comparando essa forma das correntes com a forma geral para campos fermidnicos dada em (12), ob-
temos o resultado de que, pelo menos no contexto das correntes leptdnicas carregadas, somente as
componentes quirais de esquerda dos campos de matéria fermionicos se acoplam na interagdo fraca.

No caso, desejamos fazer uma descri¢@o unificada das interagdes fraca e eletromagnética, e para

essa ultima sabemos que tanto as componentes de esquerda quanto as de direita se acoplam ao f6ton.

5Esses termos devem conter também constantes de acoplamento, da mesma forma que o termo de interacdo da QED con-
tém a carga elétrica q. Tomando a partir de agora i = ¢ = 1, essas constantes serdo determinadas e adicionadas a seguir.
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Com isso, e considerando o fato experimental que somente neutrinos de esquerda sdo observados na

Natureza', a representacao da teoria de gauge do GWS envolve os campos leptonicos dados por:

L
vl = wﬁ e UE=gf (20)
l

onde L e R indicam espinores de Weyl de esquerda e de direita, respectivamente, de acordo com (19).
Com isso, vejamos finalmente como € feita a formulagao do modelo GWS. Para tal, faremos uso

das correntes carregadas e eletromagnética destacadas abaixo, obtidas das teorias dos BVI e da QED:

JE=Pry,  JE=dpyt e Jhy ==y = =yt — 0yt 2D

onde o sinal negativo em J# € por conta da carga —1 (em unidades de e) dos 1éptons carregados.
5.2 Acoplamento minimal e os campos de gauge

Como jé dito diversas vezes, 0 GWS se trata de uma teoria de gauge do SU(2), ® U(1)y , onde
o dubleto em (20) indica claramente o o significado do indice L. Para o SU(2), , utilizaremos os
geradores R(T,) = T, = 0,/2,onde 0, sdo as matrizes de Pauli. Dessa forma, pela expressdo geral em

(12) temos que as correntes de isospin (fraco) ficam dadas por J* = WI~*T, W’ | fornecendo entio:

1 — —
N=g5Ut+dy)  H=g(Ut=J)  J=5 ™, el | @22

N | —
N | .

Vemos que as duas primeiras correntes de isospin acima guardam as correntes carregadas dadas
em (21). Entretanto, observamos que J4 guarda tanto a componente de esquerda de J*, quanto uma
nova corrente neutra que ainda nao tinhamos visto, envolvendo dois espinores de neutrinos.

Quantoao U(1)y ,oindice Y refere-se ao que chamamos de hipercarga (fraca) e o gerador desse
grupo para o dubleto serd dado por Y = —1, onde 1 indica a matriz 2 x 2 identidade, e para o singleto

da equacdo (20) usaremos Y* = —2 . Com isso, a corrente de hipercarga (fraca) fica dada por:

Ji = Uy ROl UPA Y RO = —plntap) — piatpf — 207 (23)

Em particular, perceba que a corrente eletromagnética definida em (21) pode ser dada por:

1 1
me:J§L+§Jf == Q:T3+§Y (24)

de onde obtemos a carga elétrica em funcao das cargas de isospin e hipercarga (fracos). Essa expressao,

quando aplicada em (20), fornece de fato 1éptons carregados com carga —1 e neutrinos com carga 0.

bNeutrinos sao particulas descarregadas e sem carga de cor e, portanto, nao se acoplam nem ao f6ton e nem aos gliions.
Logo, eles s interagem pela interagao fraca e, nesse contexto, observam-se apenas acoplamentos de neutrinos de esquerda.
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Ainda falta entendermos as correntes neutras que surgiram em (22). Para isso, na verdade, ve-
jamos como ficam os campos introduzidos pela teoria de gauge do SU(2), ® U(1)y , e como eles se
relacionam com 0S8 NOSsOS Wj e A, conhecidos da teoria dos BVI e da QED, respectivamente.

Conforme a formulacao geral das teorias de gauge para campos de matéria fermionicos dada na
Secdo 2.2, temos a seguinte parcela da Lagrangeana do GWS, .7, , referente aos campos leptonicos

com interagdo, onde ndo estamos considerando ainda termos de massa para os campos envolvidos:

/ /
Loy = T (a“ +ig 5 W+ i%YLBH) WL 4 iRk (au + i%YRBH> vR | (25)

! o 74 a
onde g e g’ sdo as constantes de acoplamento de gauge dos léptons aos campos de gauge Wi e B, .
Por realizar esse acoplamento, esse ¢ um resultado de fundamental importancia no Modelo Padrao!
Feito isso, identifiquemos cada um dos termos presentes na expressao acima. Primeiramente, os

termos com as derivadas d,, dardo origem a uma Lagrangeana livre, £, o , para os 1éptons envolvidos:

Liepo = 1V A0, 4 iUF19, U1 = L 10,00 + i)y 0,1, (26)

Agora, vejamos os termos de (25) que envolvem os campos de gauge W; e Wj que, pela equa-

¢do (22), sabemos que guardardo as correntes carregadas da interacdo fraca. De fato, adiantando que:

W, = % (W, +iW7) e Wi= % (W, —iw?) (27)

abrindo os termos de (25) que envolvem esses campos e empregando as defini¢des acima obtemos:

9= [ -
Ly = —5\1/%# (1 W) + WD) Ut = —ﬁ(z/zhwflwu + AW (28)

que, comparando com as correntes em (21), vemos se tratar exatamente do termo de interagcdo da teoria

dos BVI! O que precisamos fazer agora é recuperar também o termo de interacdo da QED, que envolve
a corrente eletromagnética dada em (21) e o campo A,, . Para isso, abrimos os termos que faltam da
Lagrangeana leptonica (25), que envolvem os campos de gauge W;f e B, . No caso, esses dois campos

dardo origem ao campo do féton, A, , € aum outro campo Zﬁ (anotagdonao € coincidéncia!) dados por:

B 0 —sind A
w _ COS Uy sin Oy 12 com cos 9W _ L (29)
wi sinfy,  cos by Z, N

onde o valor de sin #y, pode ser deduzido da expressao para cos 6y, acima, e Ay, € o chamado dngulo

de Weinberg. Empregando essas defini¢des no termo que falta da Lagrangeana (25) obtemos:

/ /
Lag = —Thap <%agwj + %YLBM) ok %@RWYRBM\IJR

30
1 —4sin® Oy —1° (30)

2

= gsin O Py YA, + 5 {%’*(

2 cos Oy

)m - agww;] 7
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e aqui obtemos alguns resultados muito importantes. Em primeiro lugar, chamando gsinfy = e, o
modulo da carga dos 1éptons, vemos que o primeiro termo acima € exatamente o termo de interagdo da
QED! Além disso, observamos também o surgimento de duas correntes neutras para a interagao fraca,
uma correspondendo ao processo [ — [+ Z° e a outra ao processo v; — v;+ Z° , ambos envolvendo a
particula intermedidria neutra Z° ! No caso, vemos que a corrente neutra envolvendo neutrinos possui
aforma V' — A, como deveria dado que somente os neutrinos de esquerda se acoplam ao GWS, mas
para a corrente neutra envolvendo os Iéptons carregados vemos que a forma ndo € exatamente V' — A .
A previsdo das correntes neutras para a interagdo fraca é um resultado de fundamental impor-
tancia do modelo GWS, cuja confirmacao experimental rendeu o prémio Nobel em Fisica aos seus
criadores, em 1979. Depois disso, em 1983, os préprios bésons W+ e Z° foram observados em expe-
rimentos realizados no CERN (Conseil Européen pour la Recherche Nucléaire) e, pela sua importante
contribui¢do, Carlo Rubbia e Simon Van der Meer receberam o prémio Nobel em Fisica de 1984.
Entretanto, falta ainda um importantissimo aspecto tedrico a ser considerado na formulacao

desse modelo: a origem da massa das particulas pelo mecanismo de Higgs, apresentado na Secao 3.2.

5.3 Termos de massa e a Lagrangeana do GWS

No caso do GWS, o mecanismo de Higgs envolver4 a introdug@o do dubleto do SU(2), :

o= (%) com  Ly= (D) (D"D)+ 2B — ] (31)

bo

onde apresentamos também a Lagrangeana correspondente ja no contexto da teoria de gauge (perceba
que o potencial considerado €, a menos das constantes, 0 mesmo da equagao (14) da Secdo 3.1).
Além disso, consideramos os geradores do SU(2),, como T, = ¢,/2 e o gerador de hipercarga
(fraca) como Y = 1. Com isso, pela equagio (24), vemos que a componente superior do dubleto
tem carga +1 (em unidades de e) e a componente inferior carga 0, 0 que motiva a nota¢ao em (31).
Dessa forma, devemos escolher um véacuo de Higgs onde a componente superior do dubleto
seja nula, pois caso contrdrio o vicuo seré carregado eletricamente quebrando assim a simetria eletro-
magnética do modelo GWS, o que ndo queremos. Portanto, para introduzir a QES conforme discutido

na Seg¢do 3.1, consideramos a seguinte perturbagdo ®{ a partir de um estado de vacuo descarregado:

1 . 0
o) = 7 exp (i%xa) y com v= % (32)
v

onde v? /2 corresponde ao minimo do potencial em (31) e x* € ¢ sdo os 4 graus de liberdade do campo.
Apesar da motivagdo para a componente superior do dubleto ser nula, a forma escolhida acima

para o nosso vacuo de Higgs ainda pode parecer bastante arbitraria, mas ela ndo €. Isso por que, como
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vimos, a QES introduz dim G — dim H, bésons de NG que, no contexto de uma teoria de gauge, sdo
“absorvidos” pelos campos de gauge, que em razdo disso adquirem massa. No vacuo de Higgs acima,
o que nos fizemos foi colocar os bésons de NG na exponencial complexa (eles sdo os campos y* !) e

temos que eles serdo removidos pela seguinte transformacao de gauge da perturbacdo (32):

B} — By = exp (—iaaxa) YR (33)
0 0 5 "= N

onde sobra apenas um campo real ¢ que corresponde ao béson de Higgs! No caso, a absor¢ao dos x*
pelos campos de gauge se dé através da transformacao desses campos realizada em conjunto com (33).
Feita a QES e removidos os bésons de NG, basta expandir (31) e identificar os termos de massa!

Substituindo a perturbagdo (33) acima em (31), e chamando a Lagrangeana obtida de -, , obtemos:

2
vt¢ (0 (v+9)?  (v+9)
vz )T e T

/
Ly = (aﬂ + z‘g%W,‘; + i%YHBH> (34)

onde 0 médulo ao quadrado acima é a forma abreviada de (D,®)"(D*®) . Como podemos ver,
essa Lagrangeana dé origem a diversos termos, todos de enorme importancia para o GWS: termos de
auto-interagdo do campo de Higgs, termos de interagdo com os campos de gauge, etc. Entretanto, o
que estamos mais interessados aqui sdo os termos de massa para os campos de gauge, e empregando

as relagdes (27) e (29) para substituir W e B, por W, Zg e A, , os termos de massa sdo obtidos de:

— 11+ v?g? 0 70,u
u %74 + Scos2 0 . ZHZ (35)

0292

4

onde as massas My, e M, dos bésons W+ e Z° podem ser lidas no resultado acima! Além disso, essa
expressao ndo fornece termo de massa para A, . Ou seja, o féton continua sem massa, como querfamos!

Uma outra massa que podemos retirar dos resultados acima € a massa do proprio béson de
Higgs. De fato, expandindo-se o potencial em (34), o termo proporcional a ¢* que obtemos é —2¢? ,

e como ¢ é um campo real concluimos entdo que a massa do béson de Higgs vale My = v/2p.

Para finalizar, lembremos que ainda ndo introduzimos nenhum termo de massa para os 1éptons.
No caso dos neutrinos, na formulagdo do modelo GWS essas particulas realmente sao consideradas
sem massa, visto que na verdade era isso que se achava até pouco tempo atrds (8). Entretanto, os
Iéptons carregados como o elétron certamente tém massa, e elas sao sim consideradas no modelo.

A razdo de ndo termos introduzido um termo de massa da forma M, (Jﬁ@/)f + %L wlR) = My W
por exemplo € porque como as componentes de esquerda e de direita dos férmions se acoplam de
maneira distinta no modelo GWS, o termo de massa anterior ndo € invariante de gauge nessa teoria.

Temos entdo o mesmo problema obtido com o termo de massa dos campos de gauge, € nova-
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mente a solugdo serd o mecanismo de Higgs! No caso, da mesma forma que se supds a existéncia de
um termo de potencial para os campos em P, supomos agora a existéncia de um termo de interagao,

chamado de acoplamento de Yukawa, entre os campos em ® e os campos em WX e U dado por:

Pyukawa = —G(TEOTUE + ULOUH) (36)

onde G, € a constante de acoplamento de Yukawa. Substituindo entdo a perturbagdo (33) obtemos:

G; - — G, — G, —
D?Yukawa = _\/_% [¢F(v + gb),éDZL + ¢ZL(1} + gb),éblR] = _%¢l¢l - 7%¢1/)l¢l (37)

onde obtemos a massa M; = v(/+/2 para o lépton em questio (onde diferentes constantes G; dario

diferentes massas para cada /) e um importante termo de interacdo do mesmo com o béson de Higgs!

Agrupando tudo o que vimos, a Lagrangeana do modelo GWS no setor dos 1éptons fica dada por:

gGWS = ggauge + =§/ﬂlep,0 + gW + gAZ + gHO + gYukawa (38)

onde .Zqu4e € 0 termo proprio dos campos de gauge da teoria, conforme definido em (9) e (11), e os

demais termos acima estdo dados nas equagdes (26) , (28), (30) , (34) e (37), respectivamente.

Envolvendo ideias e conceitos importantissimos como os de teorias de gauge ndo-Abelianas,
quebra espontanea de simetria, violacdo da paridade, férmions quirais, e muitos outros, o modelo GWS,
responsdvel por descrever duas das quatro interagdes fundamentais da Natureza no Modelo Padrao da
Fisica de Particulas, € um verdadeiro feito na historia da Fisica e, de fato, na historia humana. Por
suas importantes contribui¢des na formulagdo desse modelo que leva os seus nomes, Sheldon Lee

Glashow, Steven Weinberg e Abdus Salam foram agraciados com o prémio Nobel em Fisica de 1979.
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