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RESUMO

Neste trabalho veremos os principais aspectos por trás da formulação do Modelo de Glashow-
Weinberg-Salam (GWS), responsável por descrever duas das quatro interações fundamentais da Natu-
reza no Modelo Padrão da Física de Partículas: a interação eletromagnética e a interação nuclear fraca.
Em primeiro lugar, após um breve resumo de resultados importantes do Eletromagnetismo, veremos
a formulação geral das Teorias de Gauge não-Abelianas (Teorias de Yang-Mills), empregadas na for-
mulação do Modelo Padrão. Em seguida, discutiremos o conceito de Quebra Espontânea de Simetria
(QES) e demonstraremos o importante Teorema de Nambu-Goldstone, relacionado ao surgimento
de “partículas fantasma” de massa nula denominadas bósons de Nambu-Goldstone. Consideraremos
depois o fenômeno da QES no contexto de uma Teoria de Gauge qualquer, demonstrando assim, no
caso geral, o famoso Mecanismo de Higgs. Feito isso, discutiremos a violação da paridade pela
interação nuclear fraca e a sua relação com os conceitos de quiralidade e espinores de Weyl. Por fim,
juntando todos esses elementos, faremos a formulação do GWS no setor leptônico do Modelo Padrão
discutindo, em particular, as correntes carregadas e neutras da interação fraca, os bósons intermediá-
rios correspondentes, o Mecanismo de Higgs e o ilustre bóson de Higgs, os termos de massa para os
campos de gauge, o acoplamento de Yukawa e com isso a origem das massas dos léptons carregados.

Palavras-chave: Teoria Eletrofraca. Teorias de Gauge não-Abelianas. Mecanismo de Higgs.
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1 Introdução

O Modelo de Glashow-Weinberg-Salam (GWS) é a teoria que descreve, de maneira unificada,
duas das quatro interações fundamentais da Natureza no Modelo Padrão da Física de Partículas: as in-
terações eletromagnética e nuclear fraca, razão pela qual recebe também o nome de Teoria Eletrofraca.

Formulada na década de 60 pelos físicos Sheldon Lee Glashow, Steven Weinberg e Abdus Salam
(e envolvendo ideias e resultados fundamentais de Chen Ning Yang, Robert Mills, Tsung-Dao Lee,
Chien-Shiung Wu, Yoichiro Nambu, Jeffrey Goldstone, Peter Higgs, François Englert, Robert Brout,
Thomas Kibble e muitos outros, como veremos), a Teoria Eletrofraca conta com uma rica história que se
inicia em 1933 com a primeira descrição da interação fraca por Enrico Fermi e culmina, com o Modelo
GWS, na unificação da mesma com o eletromagnetismo, algo certas vezes comparado à unificação
das interações elétricas e magnéticas por Oersted, Faraday e Maxwell cerca de 100 anos antes.

Tão ricos quanto a sua história, entretanto, são os conceitos e resultados físicos empregados
na sua formulação. Mais especificamente, o Modelo GWS é uma Teoria de Gauge não-Abeliana
(ou Teoria de Yang-Mills) do grupo SU(2)L ⊗ U(1)Y com a simetria espontaneamente quebrada e
a massa dos bósons de gauge gerada pelo Mecanismo de Higgs, o qual é também responsável por
eliminar da teoria os indesejados bósons de Nambu-Goldstone que surgem com a quebra da simetria.
Além disso, a interação fraca apresenta um comportamento surpreendente e único entre as quatro
interações fundamentais: os seus processos violam a paridade, e na formulação do Modelo isso se dá
pelo acoplamento de férmions quirais (descritos por espinores de Weyl) aos campos de gauge.

Todos esses conceitos e resultados, descobertos e elaborados pelos diversos físicos citados
acima, possuem enorme relevância e importância física por si só. Sendo assim, e visando também dar
uma noção do desenvolvimento histórico por trás do Modelo GWS, faremos ao longo desse trabalho
uma breve apresentação de cada um dos conceitos do parágrafo anterior.
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2 Simetrias e interações fundamentais

2.1 O Eletromagnetismo como uma teoria de gauge do U(1)

A Eletrodinâmica Clássica, cuja formulação final foi alcançada com as Equações de Maxwell
e a Força de Lorentz na segunda metade do século XIX, é uma teoria muito bem estabelecida para a
interação eletromagnética, que no regime quântico (de campos) do Modelo Padrão é generalizada para
a chamada Eletrodinâmica Quântica (QED), uma das teorias mais bem sucedidas de toda a Física.

Um dos seus resultados mais fundamentais relaciona-se com a estrutura de grupo do Eletro-
magnetismo, obtido do fato da teoria ser invariante por transformações locais de fase. Na QED, esse
resultado é deduzido, uma consequência das leis (empíricas!) de Maxwell e Lorentz, mas no Modelo
Padrão ele pode ser tomado como um princípio e ser generalizado na esperança de se obter uma des-
crição das demais forças fundamentais. Façamos então um rápido resumo sobre essas ideias da QED.

Começamos com a Lagrangeana1 para um campo fermiônico livre (de spin 1/2):

L0 = iℏcψγµ∂µψ −mc2ψψ (1)

guardando, por exemplo, o campo de matéria referente a um par elétron-pósitron (livre, inicialmente).
Para introduzir a interação eletromagnética, retomamos o chamado acoplamento minimal2:

∂µ → ∂µ + i
q

ℏc
Aµ com Aµ ≡ (ϕ,A) (2)

onde ϕ e A são os potenciais usuais do Eletromagnetismo e q a carga elétrica do férmion em questão.
Sendo assim, retomando a Lagrangeana livre (1), temos que o acoplamento do campo eletromag-

nético Aµ ao campo de matéria (ou seja, a introdução da interação eletromagnética para esse campo)
pode ser feito trocando-se as derivadas de acordo com a equação (2) acima, de forma que obtemos:

L ′ = iℏcψγµ
(
∂µ + i

q

ℏc
Aµ

)
ψ −mc2ψψ (3)

Abrindo-se essa equação, obtemos o termo livre do campo ψ dado por (1) e uma 4-corrente
Jµ = qψγµψ acoplada ao campo eletromagnéticoAµ que, portanto, corresponde a um termo de intera-
ção para esses dois campos. Vemos que a equação (2) realmente introduz a interação eletromagnética.

Agora, consideremos as chamadas transformações de gauge do 4-potencial dadas por:

Aµ → Aµ + ∂µα com α = α(x) (4)

onde α é uma função qualquer (bem comportada) do espaço-tempo. Com essa transformação, é
introduzido em (3) um termo adicional que, na extremização em relação aos campos de matéria da
ação correspondente, segue para as equações de movimento alterando assim a dinâmica dos campos.

1Adotaremos a prática comum da literatura e usaremos apenas “Lagrageana” ao invés de “densidade Lagrangeana”.
2Aqui e em tudo que segue, utilizaremos unidades do CGS e η = diag(+1,−1,−1,−1) para a métrica do espaço-tempo.
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A maneira de eliminar esse problema é introduzindo alguma transformação para os campos
de matéria ψ e ψ de forma que o primeiro termo de L ′ acima fique invariante. No caso, isso pode
ser feito generalizando-se a invariância por transformações globais de fase observada em (1) e impondo
que essas transformações sejam locais, com uma fase α = α(x) a mesma função que aparece em (4):

ψ → exp
(
−i q

ℏc
α
)
ψ , ψ → exp

(
i
q

ℏc
α
)
ψ com α = α(x) (5)

Como ψψ → ψψ por essas transformações, na equação (3) obtemos que L ′ → L ′ e portanto
concluímos que as transformações acima correspondem a uma simetria interna3 do Eletromagnetismo.

Para terminar esse resumo, lembramos que a Lagrangeana em (3) ainda não é toda a história.
Precisamos adicionar um termo cinético para o campo eletromagnético, e o termo que se usa é exa-
tamente aquele da teoria clássica, de forma que a Lagrangeana completa da QED fica dada por:

LQED = −1

4
FµνF

µν + iℏcψγµ
(
∂µ + i

q

ℏc
Aµ

)
ψ −mc2ψψ com Fµν = ∂µAν − ∂νAµ (6)

Vemos que cada termo dessa Lagrangeana é invariante pelas transformações simultâneas (4) e
(5), inclusive o tensor dos campos Fµν visto que estamos considerando válido que ∂µ∂να = ∂ν∂µα .

Portanto, das leis empíricas de Maxwell e Lorentz, obtemos a teoria acima que apresenta uma
simetria interna por transformações locais de fase as quais, pela equação (5), correspondem à atuação
de matrizes 1×1 (números!) complexas e unitárias sobre ψ e ψ. Sendo assim, na QED vemos que os
campos de matéria transformam por uma representação4 do grupo U(1), e portanto dizemos que o
Eletromagnetismo é uma teoria de gauge desse grupo de simetria. A seguir, discutiremos o que isso
significa, e como tudo o que foi apresentado acima se generaliza ao considerarmos outros grupos.

2.2 O princípio de gauge e as teorias de Yang-Mills

Na seção anterior, partimos de resultados conhecidos do Eletromagnetismo e obtemos a simetria
por transformações locais de fase, ou a chamada simetria de gauge dessa interação. Agora, não conhe-
cemos as interações que esperamos descrever, e portanto consideramos (uma representação) de um
grupo de simetria e empregamos o acoplamento minimal para obter a forma da interação. O grupo de
simetria considerado é o chamado grupo de gauge e a estratégia de se introduzir a interação fundamental
pela imposição de uma simetria (local) leva o nome de princípio minimal ou princípio de gauge.

Baseando-se na QED, a generalização é direta: começamos com um multipleto de campos de
matéria fermiônicos5 (de spin 1/2) que transformam por alguma representação R de um grupo G:

3Esse termo é utilizado para diferenciar a simetria encontrada das simetrias (externas) do espaço-tempo.
4Aqui é importante salientar que os campos de matéria irão transformar por alguma representação do grupo de simetria

considerado, o que é importante pois, como ficará claro, campos de matéria transformando por diferentes representações
de um mesmo grupo de gauge (a ser propriamente definido na próxima seção) darão origem à teorias físicas distintas.

5Tudo o que faremos daqui em diante pode ser analogamente formulado para multipletos de campos bosônicos.
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ψ =


ψ1

...
ψN

 com ψ → R(g)ψ (7)

onde R(g) é uma matriz quadrada N×N , que representa o elemento g do grupo G e atua sobre os ψi

de ψ (onde cada ψi por sua vez é um espinor de Dirac de 4 componentes). Inicialmente, supomos que
ψ → R(g)ψ é uma simetria global da Lagrangeana livre, L0 , desses campos, e considerando-se
por exemplo o seu termo cinético , iℏcψγµ∂µψ , a invariância pela transformação acima implica
que R deve ser uma representação unitária: R †(g) = R−1(g). Sobre o termo de massa para os
campos considerados, escreveremos apenas LM , que poderá ser nulo indicando campos sem massa
ou não-nulo indicando campos massivos. De qualquer forma, supomos que esse termo seja invariante.

Sendo assim, aplicamos o princípio de gauge: impomos a simetria de L0 quando a transforma-
ção em (7) é feita local e portanto, de maneira análoga ao que foi feito em (2), trocamos as derivadas
∂µ pela chamada derivada covariante definida abaixo, que envolve a introdução do termo R(Aµ):

Dµ ≡ ∂µ + ieR(Aµ) com Aµ → gAµg
−1 +

i

e
(∂µg)g

−1 (8)

onde e é a constante de acoplamento de gauge e a segunda eq. é a forma como Aµ deve transformar
para que, em conjunto com a transformação em (7), o termo cinético da Lagrangeana seja invariante.6

Uma coisa importante a respeito das transformações (locais) em (7) é que as mesma, feitas
ponto a ponto no espaço-tempo, não podem introduzir descontinuidades nos campos de matéria, o que
indica, então, que devemos ter um contínuo suave de elementos de G. Além disso, como esses ele-
mentos serão diferenciados conforme o resultado acima, obtemos que os mesmos devem formar uma
variedade diferenciável, e portanto concluímos que o grupo de gauge G deve ser um grupo de Lie.7

Feita essa observação, é possível demonstrar (usando o mapeamento exponencial, por exemplo,
que relaciona os geradoresTa da álgebra com os elementos do grupo através de g(x) = exp(iωa(x)Ta))
que o termo (i/e)(∂µg)g

−1 na equação acima é um elemento da álgebra (de Lie) G do grupo G e,
portanto, que o próprio Aµ ∈ G , podendo então ser escrito como Aµ = Aa

µTa . Em particular, temos
que a representação R dos elementos do grupo é transferida para os elementos da álgebra, de forma
que na verdade temos R(Aµ) = Aa

µR(Ta), o que explica o uso do R na derivada covariante em (8).
No caso, uma vez que a derivada covariante atua sobre os campos de matéria, deixamos explícita a
notação R visto que, como já dito, a representação empregada tem influência direta sobre a Física do
problema. Por outro lado, para a transformação do elemento Aµ dada em (8), temos que se trata de
um resultado na álgebra G, válido em qualquer representação, e portanto deixamos os R’s implícitos.
Em tudo o que segue, empregaremos essa mesma lógica no uso explícito ou não da representação R.

6Em particular, substituindo os elementos de U(1) dados em (5) obtemos a transformação (4) do Eletromagnetismo!
7Demonstra-se também (4) que G deve ser compacto e ter álgebra semisimples, mas não entraremos nesses detalhes.
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Portanto, a interação fundamental fica introduzida na teoria pelo uso da derivada covariante defi-
nida em (8), que faz o acoplamento dos campos de matéria a n = dimG campos de gauge Aa

µ através
das matrizes R(Ta) (os geradores da álgebra de Lie na representação R do grupo de gauge). No mo-
delo GWS, G = SU(2)L ⊗ U(1)Y e portanto temos dimG = 4 campos de gauge, que correspondem
aos 3 bósons W± e Z0 e ao fóton, as partículas mediadoras das interações fraca e eletromagnética.

Dada a introdução dos campos Aa
µ , precisamos adicionar à Lagrangeana da teoria os termos

próprios desses campos. Na QED, isso foi feito através da equação (6). Aqui, por generalização do
caso eletromagnético, e percebendo na verdade (no contexto da geometria diferencial, que não abor-
daremos aqui) que o termo Aµ introduzido na derivada covariante se trata de uma conexão, temos que
o tensor dos campos Fµν é definido como a curvatura dessa conexão, e fica dado pelo comutador de
derivadas covariantes [Dµ , Dν ] ≡ ieR(Fµν) . Assim, utilizando (8), obtemos que:

Fµν ≡ ∂µAν − ∂νAµ + ie [Aµ , Aν ] com Fµν → gFµν g
−1 (9)

onde a segunda equação acima é a maneira como Fµν transforma, em conjunto com (7) e (8).8 Como
discutido,Aµ ∈ G . Sendo assim, demonstra-se (3) que [Aµ , Aν ] ∈ G e, portanto, pela equação acima,
obtemos que Fµν ∈ G . Dessa forma, deixando a notação explícita, temos que R(Fµν) = F a

µνR(Ta).
Como pode ser verificado, os operadoresDµ definidos em (8) satisfazem a Identidade de Jacobi:

[Dλ , [Dµ , Dν ]] + [Dν , [Dλ , Dµ]] + [Dµ , [Dν , Dλ]] = 0 e, como [Dµ , Dν ] ≡ ieR(Fµν) , definindo a
derivada covariante do tensor dos campos comoDλFµν ≡ ∂λFµν+ie [Aλ , Fµν ] = [Dλ , Fµν ] , obtemos:

DλFµν +DνFλµ +DµFνλ = 0 onde DλFµν ≡ ∂λFµν + ie [Aλ , Fµν ] (10)

que é a chamada Identidade de Bianchi, satisfeita para qualquer tensor dos camposFµν definido em (9).
Por fim, por generalização do termo introduzido na equação (6) da QED, adicionamos o termo

próprio dos campos de gauge de forma que a Lagrangeana completa da teoria fica dada por:

L = −1

4
Tr (FµνF

µν) + iℏcψγµDµψ + LM (11)

com Dµ a derivada covariante definida em (8) e LM o termo de massa dos campos de matéria.
Extremizando em relação aos camposAa

µ a ação correspondente à Lagrangeana acima obtemos:

(DµF
µν )a = Jν

a com Jν
a = eℏcψγνR(Ta)ψ (12)

onde foi utilizado que DµF
µν = (DµF

µν )a Ta e as 4-correntes Jν
a (temos n = dimG delas) são obti-

das na extremização expandindo-se a derivada covariante em iℏcψγνDνψ + LM = L0 − Jν
aA

a
ν .9

Por fim, perceba que no caso da QED, uma teoria de gauge Abeliana com dimG = 1, os
comutadores que aparecem nas equações acima se anulam. Dessa forma, as Equações de Yang-Mills
em (12) e a identidade de Bianchi em (10) tornam-se, respectivamente, os conhecidos resultados

8Em particular, no caso Abeliano [Aµ , Aν ] = 0 e gFµν g
−1 = Fµν de forma que recuperamos os resultados da QED!

9No caso, DµF
µν ∈ G pois DµF

µν ≡ ∂λFµν + ie [Aλ , Fµν ] e, como vimos, Aλ ∈ G , Fµν ∈ G ⇒ [Aλ , Fµν ] ∈ G.
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∂µF
µν = Jν e ∂λFµν + ∂νFλµ + ∂µFνλ = 0 do Eletromagnetismo. De fato, as equações (12) e (10)

acima constituem nas teorias de gauge o análogo das equações de Maxwell (em sua forma diferencial)!

Obtemos assim, no contexto de campos de matéria fermiônicos, a formulação geral das teorias
de gauge que estão por trás das três interações fundamentais do Modelo Padrão da Física de Partículas!

As teorias de gauge não-Abelianas foram formuladas pela primeira vez por Chen Ning Yang
e Robert Mills em 1954 (16) e por isso levam também o conhecido nome de Teorias de Yang-Mills.
Em uma tentativa de descrever a interação forte, Yang e Mills consideraram uma ideia introduzida por
Heisenberg em 1932 de que o próton e o nêutron seriam dois estados (isospin up e isospin down) de um
ente mais fundamental chamado núcleon (8). Visto que a teoria correspondente é invariante por trans-
formações globais na representação dubleto doSU(2), Yang e Mills basearam-se na QED e impuseram
que a teoria fosse invariante por transformações locais, da mesma forma que fizemos acima. Entretan-
to, o modelo de Yang e Mills para a interação forte não deu frutos principalmente pelo fato da simetria
de isospin não ser uma simetria exata dessa interação. Prótons e nêutrons são partículas distintas e, na
verdade, estados ligados de outras partículas (essas sim fundamentais) chamadas quarks. A descrição
correta para as interações fortes é uma teoria de gauge na representação tripleto do SU(3)C .

Algo que poderíamos pensar em introduzir na Lagrangeana (11) é um termo de massa para os
campos de gauge Aa

µ que, se tratando de campos vetorias (de spin 1)10, nos leva a considerar (a menos
de constantes) a quantidade m2Tr(AµA

µ). Entretanto, devido à forma como Aµ transforma, temos
que esse termo não é invariante de gauge e, em razão do fator não-homogêneo na equação (8), não há
termo que seja. A conclusão é que a teoria que acabamos de formular só é capaz de introduz campos
de gauge sem massa, o que está em sério desacordo com a interação fraca visto que os bósons W± e
Z0 têm (muita) massa: um único bósonW tem massa correspondente a aproximadamente 85 prótons!

Portanto, se a simetria de gauge realmente for algo fundamental na descrição das interações do
Modelo Padrão, deve existir na Natureza algum mecanismo que, no contexto das teorias de gauge, de
onde os campos Aa

µ “nascem” sem massa, quebre (espontaneamente) a simetria e forneça massa para
os mesmos. Esse mecanismo existe e tem nome: no modelo GWS ele é o famoso Mecanismo de Higgs.

10No caso, os campos de gauge Aa
µ são 4-vetores, que transformam pela representação vetorial do grupo de rotações e,

portanto, são campos (vetoriais) de spin 1. Dessa forma, como as partículas correspondentes são bósons, as partículas
mediadoras das interações fundamentais associadas aos campos de gauge são comumente chamadas de bósons de gauge.
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3 Quebra espontânea de simetria

3.1 O Teorema de Nambu-Goldstone

O mecanismo de Higgs consiste na aplicação do fenômeno da quebra espontânea de simetria
(QES) a uma teoria de gauge, que apresenta simetria local. Entretanto, importantes aspectos e resulta-
dos desse fenômeno, como o Teorema de Nambu-Goldstone, são obtidos no contexto de uma teoria com
simetria (contínua) global, e portanto, deixemos o caso das simetrias de gauge para a próxima seção.

Dessa vez, começamos com um multipleto de campos escalares complexos ϕi , que são campos
de matéria bosônicos (de spin 0)11, que transformam por alguma representação R de um grupo G:

ϕ =


ϕ1

...
ϕN

 com ϕ→ R(g)ϕ (13)

A hipótese central da QES é que a Lagrangeana (livre) desses campos, invariante pela transfor-
mação global acima, apresente um termo de potencial que dê origem à estados de vácuo (estados de
menor energia) ϕ0 ̸= 0. Um exemplo de grande importância, como veremos, é o seguinte:

L0 = (∂µϕ)
†(∂µϕ)− V

(
|ϕ|2
)
= (∂µϕ)

†(∂µϕ) +
µ2

2
|ϕ|2 − η

4
|ϕ|4 (14)

onde µ e η são constantes. No caso, obtém-se facilmente que o mínimo do potencial V (|ϕ|2) acima
ocorre para |ϕ0|2 = µ2/η , e sendo |ϕ|2 = |ϕ1|2+ · · ·+ |ϕN |2 vemos que existem infinitas combinações
dos campos ϕi que fornecem estados de vácuo do sistema, e que as transformações em (13) levam
uma configuração de vácuo em outra visto que, pela invariância de L0 , temos ϕ†ϕ→ ϕ†ϕ.

Entretanto, uma outra característica da QES é que na determinação das dinâmicas provenientes
da Lagrangeana acima, onde são consideradas perturbações a partir de estados de vácuo do sistema, é
necessário escolher uma combinação específica dos campos ϕi para realizar a perturbação. Portanto,
ao considerarmos excitações a partir de um estado de vácuo ϕ0 ̸= 0 , temos que a simetria do grupoG
é perdida visto que as suas transformações levarão esse estado de vácuo em um outro. Eventualmente,
poderá acontecer que o ϕ0 escolhido ainda seja invariante por algum conjunto de transformações de
G, e nesse caso dizemos que existe uma simetria residual na teoria, referente a um subgrupoH0 ⊂ G.

Sendo assim, a QES consiste no fato de que, por mais que a Lagrangeana da teoria apresente
uma determinada simetria, perturbações a partir de certos estados de vácuo não irão necessariamente,
e portanto, nesses casos, a simetria da teoria é quebrada espontaneamente pela dinâmica dos campos
envolvidos. É uma ideia sútil, mas extremamente importante, introduzida no contexto da Física de
Partículas por Yoichiro Nambu em 1960, o que lhe rendeu o prêmio Nobel em Física de 2008.

11Campos escalares (reais ou complexos) transformam, como o próprio nome indica, pela representação escalar do
grupo de rotações. Dessa forma, eles correspondem à partículas de spin 0 que, como sabemos, são bósons.
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Vejamos então as consequências desse fenômeno para os campos em (13). Considerando a trans-
formação dada, temos que a variação dos campos pode ser determinada utilizando o mapeamento expo-
nencialR(g) = exp(iωaR(Ta)) ≈ 1+iωaR(Ta) , de forma que δϕi = Rij(g)ϕj−ϕi = iωaRij(Ta)ϕj .
Reescrevendo essa equação em termos dos 2N campos independentes (reais) de ϕ , obtemos: δφi =

iωaRij(Ta)φj onde Rij(Ta) é a matriz 2N×2N correspondente a Rij(Ta) . Com isso, deduzimos:

δV =
∂V

∂φi

δφi = 0 ⇒ ∂V

∂φi

iωaRij(Ta)φj = 0 ⇒ ∂V

∂φi

Rij(Ta)φj = 0 (15)

onde na primeira equação δV = 0 pelo fato do potencial ser invariante pelas transformações em (13)
e o resultado final é obtido uma vez que a segunda equação deve ser válida para todo ωa.

Derivando o último resultado acima em relação aφk e aplicando a equação obtida em um estado
de vácuo φi = ai , para o qual a derivada primeira de V se anula, chegamos no seguinte resultado:[

∂2V

∂φk∂φi

Rij(Ta)φj +
∂V

∂φi

Rij(Ta)
∂φj

∂φk

]
φ= a

= 0 ⇒ ∂2V

∂φk∂φi

∣∣∣∣
φ= a

Rij(Ta)aj = 0 (16)

No caso, expandindo-se o potencial V em série de Taylor, temos que o termo de massa para
os campos φi é identificado como o termo quadrático nos mesmos. Sendo assim, fica imediato que a
derivada segunda acima, a qual aparece justamente nesse termo na expansão de V , corresponde à ma-
triz das massas (M2)ki , e portanto o resultado acima se escreve como: (M2)kiRij(Ta)aj = 0.

Agora, consideremos o subgrupo de simetria H0 ⊂ G do estado de vácuo escolhido. Como
R(g)ϕ0 = ϕ0 ⇒ δϕ0 = 0 , o resultado δϕi = iωaRij(Ta)ϕj da página anterior aplicado ao estado de
vácuo e reescrito em termos dos 2N campos reais φi fornece: Rij(Ta)aj = 0 , ou seja, os geradores
da álgebra do subgrupo H0 ⊂ G aniquilam o vácuo, e portanto a equação (M2)kiRij(Ta)aj = 0 está
automaticamente satisfeita indicando que nesse subgrupo, de maneira geral, (M2)ij ̸= 0. Por outro
lado, para as transformações deG que não preservam o vácuo não será mais válido que Rij(Ta)aj = 0

e, portanto, a equação (M2)kiRij(Ta)aj = 0 implica que, fora de H0 ⊂ G, os autovalores de (M2)ij

deverão ser nulos. Logo, diagonalizando a matriz das massas obtemos que, nesse caso, (M2)ii = 0.
Ou seja, da quebra espontânea da simetria global considerada obtemos dimG−dimH0 campos

reais de massa nula! As partículas associadas a esses campos são chamadas de bósons de Nambu-
Goldstone, e esse resultado é o importante Teorema de Nambu-Goldstone, que fica enunciado como:

O Teorema de Nambu-Goldstone: Se uma teoria apresenta uma simetria (contínua) global por
um grupoG e o estado de vácuo quebra espontaneamente essa simetria para um subgrupoH0 ⊂ G

então surgem dimG− dimH0 bósons de Nambu-Goldstone (partículas de spin 0 e massa nula).

No modelo GWS, a introdução de bósons de Nambu-Goldstone (NG) é problemática pois, ape-
sar do fato de que essas partículas seriam muito facilmente produzidas, já que não possuem um gap de
massa, elas não são observadas na Natureza. Entretanto, o teorema acima é válido para simetrias glo-
bais, e o GWS é uma teoria com simetria local (de gauge). Portanto, vejamos agora qual o efeito da
QES sobre as teorias de gauge, onde os bósons de NG acima desempenharão um papel importante.
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3.2 O Mecanismo de Higgs

Partindo das equações (13) e (14), a teoria de gauge correspondente é obtida impondo-se que
as transformações do grupoG sejam locais, de modo que as derivadas ∂µ que ocorrem em (14) devem
ser substituídas por derivadas covariantes Dµ , e adicionando-se o termo para os campos de gauge
da mesma forma que foi feito em (11). Dessa forma, o termo cinético da Lagrangeana fica dado por
(Dµϕ)

†(Dµϕ) , onde fica feito o acoplamento dos campos de matéria aos campos Aa
µ.

Por conta desse acoplamento, um determinado estado de vácuo ϕ0 da nossa teoria de gauge, o
qual chamaremos de vácuo de Higgs, não é mais aquele que satisfaz apenas ∂µϕ0 = 0 e que minimiza
o potencial V , da mesma forma que na seção anterior. Agora, como temos interações com os campos
de gauge, que contribuem para a energia do sistema, os estados de vácuo devem satisfazer Dµϕ0 = 0.

Sendo assim, escolhido um vácuo de Higgs ϕ0 , empregamos a mesma notação da seção anterior
e chamamos o grupo de simetria residual de ϕ0 , cujas transformações deixam esse vácuo invariante, de
H0 ⊂ G. Em particular, empregando o resultado δϕ = iωaR(Ta)ϕ deduzido anteriormente, e usando
que δϕ0 = R(g)ϕ0−ϕ0 = 0 para as transformações deH0 obtemos, da mesma forma que na seção an-
terior, que R(Ta)ϕ0 = 0 , ou seja, que os geradores da álgebra de H0 aniquilam o vácuo de Higgs.

Uma vez que esperamos que as massas dos campos de gauge venham da interação com os campos
de matéria ϕi cujos estados de vácuo quebram espontaneamente a simetria de gauge, o termo de massa
para os Aa

µ deve vir do termo cinético (com interação) (Dµϕ)
†(Dµϕ), até porque, além do termo

próprio dos campos de gauge, esse é o único lugar na Lagrangeana em que esses campos aparecem,
então o termo de massa só pode vir daí. Expandindo-se então o termo acima obtemos:

(Dµϕ)
†(Dµϕ) = (∂µϕ)

†(∂µϕ) + ie
[
(∂µϕ)

†R(Aµ)ϕ− ϕ†R(Aµ)(∂
µϕ)
]
+ e2ϕ†R(Aµ)R(A

µ)ϕ (17)

e como o termo de massa para os campos de gauge deve ser quadrático em Aa
µ , concluímos que, na

perturbação a partir de um estado de vácuo ϕ0 que causa a QES, o resultado acima dará origem ao
termo de massa e2ϕ†

0R(Aµ)R(A
µ)ϕ0 , o qual pode ser reescrito de maneira mais clara como:

e2ϕ†
0R(Ta)R(Tb)ϕ0A

a
µA

µ,b =
1

2
e2ϕ†

0 {R(Ta) , R(Tb)}ϕ0A
a
µA

µ,b ≡ 1

2
(M2)abA

a
µA

µ,b (18)

onde (M2)ab é a matriz das massas dos campos de gauge e {R(Ta) , R(Tb)} denota o anti-comutador
dos geradores da álgebra do grupo de gauge G na representação R escolhida.12

Em particular, lembremos que os geradores da álgebra do subgrupo de simetria aniquilam o
vácuo de Higgs: R(Ta)ϕ0 = 0. Portanto, no subespaçoH0 , vemos que (M2)ab = 0 indicando que os
dimH0 bósons de gauge correspondentes não ganham massa. Isso na verdade era algo esperado pois se

12Aqui, notamos que R(Ta)R(Tb) pode ser reescrito como metade do comutador [R(Ta) , R(Tb)] mais metade do
anti-comutador {R(Ta) , R(Tb)}. Como a contração de uma quantidade anti-simétrica (o comutador anterior) com
uma quantidade simétrica (o termo Aa

µA
µ,b ) é zero, o termo com o comutador se anula e daí segue o resultado em (18).
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temos uma simetria de gauge residual, os bósons de gauge associados realmente não podem ter massa.
Por outro lado, para os geradores fora de H0 não temos, de maneira geral, que R(Ta)ϕ0 = 0,

de forma que (M2)ab ̸= 0 indicando que os bósons de gauge correspondentes ganharam massa!
Além disso, veja algo de grande importância: temos dimG−dimH0 bósons de gauge massivos,

exatamente o mesmo número de bósons de NG introduzidos pela QES! No caso, como partículas
massivas possuem um grau de liberdade a mais que as não massivas, já que não viajam na velocidade
da luz, temos que cada um dos dimG − dimH0 bósons de gauge devem ter adquirido um grau de
liberdade para se tornarem massivos, e aqui vem algo surpreendente do mecanismo de Higgs: esses
graus de liberdade são provenientes justamente dos dimG − dimH0 bósons de NG, que portanto
são absorvidos pelos bósons de gauge para gerar massa para os mesmos, sumindo da teoria! Em um
mecanismo genial, portanto, resolvemos tanto o problema da massa dos campos de gauge quanto o dos
indesejados (por não serem observados na Natureza) bósons de NG que surgem na teoria com a QES!

Todavia, os campos ϕi adicionam partículas massivas que não serão removidas da teoria, e que
portanto devem ser observadas na Natureza. No modelo GWS, como veremos, serão introduzidos dois
campos complexos, dos quais três de suas componentes reais, correspondentes à bósons de NG, se-
rão absorvidos pelos bósonsW± e Z0 que portanto adquirem massa. O fóton, sendo o bóson de gauge
do subgrupo de simetria U(1)EM , continua sem massa e, portanto, sobra um campo real massivo ϕ
associado a uma partícula descarregada13 de spin 0 a ser detectada em laboratório. Essa partícula é o
famoso bóson de Higgs, observada no LHC (Large Hadron Collider) em 2012, razão pela qual Peter
Higgs e François Englert receberam o prêmio Nobel em Física do ano seguinte, pela sua contribuição,
em 1964 (10) (2), na descoberta e desenvolvimento teórico do mecanismo que acabamos de apresentar.

O que faremos agora é considerar mais uma quebra de simetria, dessa vez de uma simetria discre-
ta do espaço-tempo: a paridade. Como mencionado na Introdução, essa é uma propriedade exclusiva da
interação fraca, que portanto terá um papel importante na formulação do modelo GWS, como veremos.

13Um campo real, pelo Teorema de Noether, não conservaria a carga elétrica e, portanto, deve ser descarregado.
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4 Paridade e férmions quirais

4.1 Helicidade, quiralidade e os espinores de Weyl

A paridade diz respeito a transformações de inversão espacial de um sistema físico, que sendo
portanto da forma (x, y, z) → (−x,−y,−z) vemos se tratar de transformações discretas. Até meados
do século XX, era tomado como um princípio que todos os processos na Natureza seriam invariantes
por essas transformações, significando, por exemplo, que se nos for mostrado um trecho de um filme,
não há maneira de dizer se a cena é o que de fato aconteceu ou se ela foi invertida, refletida por um
espelho, digamos, uma vez que as duas situações seriam perfeitamente possíveis de serem observadas.

É uma ideia natural, intuitiva, e de fato amplamente verificada em diversas situações, mas,
em 1956 (11) , Tsung-Dao Lee e Chen Ning Yang (o mesmo das Teorias de Yang-Mills) perceberam
que essa suposta simetria da Natureza ainda não havia sido verificada no caso das interações fracas e,
com uma ideia ousada de que certos aspectos dessa interação poderiam ser explicados por violações da
paridade, propuseram experimentos envolvendo certos processos fracos para esclarecer essas questões.

Antes de prosseguirmos com o que foi descoberto, entretanto, vejamos alguns conceitos im-
portantes que serão utilizados nas discussões que seguem, e particularmente na formulação do GWS.

Nas seções anteriores fomos apresentados às partículas bosônicas do Modelo Padrão: os bósons
de gauge e o bóson de Higgs. Além dessas, temos também partículas fermiônicas (de spin 1/2) que
estão separadas em dois grupos, os léptons e os quarks, que por sua vez estão divididos em três famílias
ou gerações, com a diferença entre duas gerações sendo basicamente a massa das partículas. A primeira
família dos léptons é formada pelo conhecido elétron e o seu neutrino associado, e a primeira família
dos quarks é formada pelos quarks up e down, que compõem os prótons e nêutrons, por exemplo.

Neste trabalho, lidaremos apenas com os léptons. Detalhes a respeito da introdução dos quarks
no modelo GWS podem ser encontrados na ref. (4). De toda forma, a questão é que esses férmions serão
descritos pelos chamados espinores de Weyl, que estão relacionados ao importante conceito de qui-
ralidade de uma partícula, que em certos casos se confunde com outra propriedade chamada helicidade.

A helicidade nada mais é que a projeção do spin da partícula sobre a direção do seu vetor
momento. Com isso, para uma partícula livre, temos que se trata de uma quantidade conservada.
Logo, suponhamos que a partícula em questão seja massiva, e que em um determinado referencial ela
tenha helicidade positiva. No caso, poderemos sempre fazer um boost para um referencial em que a
partícula muda o sentido do seu movimento, e com isso a helicidade troca de sinal. Portanto, para
partículas massivas, a helicidade é uma constante de movimento mas não é um escalar de Lorentz.
Para partículas sem massa, entretanto, temos que o boost anterior não é possível pois a partícula viaja
na velocidade da luz, e portanto a helicidade é tanto conservada quanto invariante de Lorentz.

A quiralidade, por outro lado, vem de uma definição mais abstrata sendo dada como o autovalor
de γ5 ≡ iγ0γ1γ2γ3. Aqui, adotaremos a base para as matrizes gama γµ (µ = 0, 1, 2, 3) (também
chamadas de matrizes de Dirac) dada na referência (1) , de onde a matriz γ5 pode ser determinada.
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Sendo (γ5)2 = 1 obtemos que a quiralidade pode assumir os autovalores±1, e como pode ser de-
monstrado que γ5 comuta com todos os geradores do grupo de Lorentz na representação espinorial, te-
mos que a quiralidade é sempre um escalar de Lorentz. Os autoestados de γ5 podem ser dados por:

ψR =
1

2

(
1 + γ5

)
ψ e ψL =

1

2

(
1 − γ5

)
ψ (19)

onde γ5ψR = +ψR e γ5ψL = −ψL . Esses são os chamados espinores de Weyl, que por serem os
autoestados da quiralidade correspondem a partículas denominadas férmions quirais (de spin 1/2).

Agora, precisamos dar alguma interpretação para a quiralidade, que por enquanto se trata apenas
do autovalor da matriz γ5. No caso, manipulando-se a equação de Dirac, γµpµψ = mcψ , é possível
chegarmos em Σ ·p ψ = γ5 (E/c)ψ− (mc2/c) γ5γ0ψ onde Σ é tal que S = (ℏ/2)Σ seja o operador
de spin. Dessa forma, no limite de altas energias vemos que o resultado anterior se torna Σ · p ψ ≈
γ5 (E/c)ψ que na verdade pode ser escrito como (Σ · p/||p||)ψ ≈ γ5ψ . Mas veja, o que aparece no
primeiro termo dessa expressão é justamente o operador helicidade, que portanto se confunde com o
operador quiralidade no limite de altas energias. E na verdade, sem = 0, o resultado anterior se torna
exato e portanto, para partículas sem massa, quiralidade e helicidade correspondem à mesma coisa!

Por fim, uma outra manipulação da equação de Dirac fornece que γµpµψR = mcψL e γµpµψL =

mcψR significando que, se m ̸= 0, ψR e ψL estão acoplados de forma que a quiralidade não será uma
quantidade conservada. Por outro lado, sem = 0, ψR e ψL se desacoplam e a quiralidade se conserva.

4.2 O experimento de Wu e a violação da paridade

Logo que as sugestões de Lee e Yang foram publicadas, em 1956, um experimento liderado por
Chien-Shiung Wu, muitas vezes referida como Madame Wu, foi realizado com os seus resultados sen-
do publicados no início do ano seguinte (15) . Nesse experimento, núcleos de 60Co foram alinhados
com seus spins apontando em uma determinada direção. Sendo isótopos radioativos do Cobalto, esses
núcleos decaem pelo chamado decaimento beta, que é dado por n→ p++e−+νe e se trata de um im-
portantíssimo processo fraco (mediado pela interação fraca).14 Sem discutir aqui a enorme dificuldade
técnica do experimento, o que Madame Wu observou foi simplesmente que os elétrons provenientes
dos decaimentos beta são emitidos preferencialmente na direção oposta a dos spins nucleares.

O que isso significa para a conservação ou não da paridade? Basta “refletir” esse experimento
por um espelho. Se no experimento em questão os spins dos núcleos apontam “para cima”, de forma que
os elétrons são emitidos preferencialmente “para baixo”, no espelho os núcleos girarão no sentido con-
trário mas os elétrons continuarão sendo emitidos na mesma direção. No espelho, portanto, os elétrons
são emitidos preferencialmente na mesma direção dos spins nucleares, mas veja, isso não é observado
na Natureza! Obtemos então que a interação fraca viola a paridade, um comportamento único entre as
quatro interações fundamentais! Vejamos agora o que isso significa na formulação do modelo GWS.

14Nesse decaimento, n indica o nêutron, p+ o próton, e− o elétron e νe a anti-partícula do neutrino associado ao elétron.
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5 A formulação do modelo GWS

5.1 Correntes carregadas e os léptons de esquerda

Pela sua revolucionária ideia, verificada experimentalmente por Madame Wu, Lee e Yang rece-
beram o prêmio Nobel em Física de 1957. As consequências teóricas foram imediatas pois, uma vez
que a interação fraca viola a paridade, tal comportamento deveria ser incorporado aos modelos que
tentavam descrevê-la. Em particular, determinados processos fracos conhecidos na época apontavam
para dois vértices fundamentais dessa interação, um deles correspondendo ao processo e− → νe+W

−

que, por conservação da carga elétrica, envolve uma partícula intermediária carregada negativamente
chamada W− , e o outro dado pelo processo contrário νe → e− +W+ envolvendo outra partícula
intermediária carregada, dessa vez positivamente, chamada W+. A notação não é coincidência, essas
partículas são de fato os bósons W± da interação fraca, que se acoplam às correntes carregadas.

Antes do advento das teorias de gauge, entretanto, o que se tinha era um modelo em que o termo
de interação da QED , Jµ

emAµ = qψγµψAµ , que guarda o vértice fundamental dessa teoria, era gene-
ralizado para Jµ

−W
−
µ = ψlγ

µψνlW
−
µ e Jµ

+W
+
µ = ψνl

γµψlW
+
µ no caso da interação fraca15, onde ψl

refere-se ao espinor do elétron, do múon ou do tau (as partículas análogas ao elétron nas outras duas
famílias dos léptons) e ψνl refere-se ao espinor do neutrino correspondente (da mesma família de ψl).

Entretanto, lembremos de uma coisa importante: ψγµψ é um vetor de Lorentz, mas a violação da
paridade de Lee e Yang nos leva agora a considerarmos também a quantidadeψγµγ5ψ, um pseudo-vetor
ou vetor axial, que não troca de orientação por transformações de paridade, violando assim a mesma.
Com isso, chegou-se à conclusão de que as correntes carregadas deveriam na verdade ser dadas pela
mistura entre uma parte vetorial e outra axial, da forma ψγµ(1+ ϵγ5)ψ , e logo demonstrou-se experi-
mentalmente (8) que ϵ = −1 , e portanto que as correntes carregadas assumiam a forma “V −A” dada
por Jµ

− = ψlγ
µ(1− γ5)ψνl e Jµ

+ = ψνl
γµ(1− γ5)ψl . Esse modelo fenomenológico para a interação

fraca, baseado nos termos de interação Jµ
−W

−
µ e Jµ

+W
+
µ com “correntes V −A”, ficou conhecido como

a Teoria dos Bósons Vetoriais Intermediários (BVI). Mais detalhes podem ser encontrados na ref. (12).

Um primeiro passo para a obtenção de uma teoria de gauge pode ser feito notando-se que pode-
mos fazerψlγ

µ(1−γ5)ψνl = 2ψL
l γ

µψL
νl

ondeψL indica um espinor de Weyl (de esquerda, nesse caso).
Comparando essa forma das correntes com a forma geral para campos fermiônicos dada em (12), ob-
temos o resultado de que, pelo menos no contexto das correntes leptônicas carregadas, somente as
componentes quirais de esquerda dos campos de matéria fermiônicos se acoplam na interação fraca.

No caso, desejamos fazer uma descrição unificada das interações fraca e eletromagnética, e para
essa última sabemos que tanto as componentes de esquerda quanto as de direita se acoplam ao fóton.

15Esses termos devem conter também constantes de acoplamento, da mesma forma que o termo de interação da QED con-
tém a carga elétrica q. Tomando a partir de agora ℏ = c = 1, essas constantes serão determinadas e adicionadas a seguir.
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Com isso, e considerando o fato experimental que somente neutrinos de esquerda são observados na
Natureza16, a representação da teoria de gauge do GWS envolve os campos leptônicos dados por:

ΨL =

(
ψL
νl

ψL
l

)
e ΨR = ψR

l (20)

onde L e R indicam espinores de Weyl de esquerda e de direita, respectivamente, de acordo com (19).
Com isso, vejamos finalmente como é feita a formulação do modelo GWS. Para tal, faremos uso

das correntes carregadas e eletromagnética destacadas abaixo, obtidas das teorias dos BVI e da QED:

Jµ
− = ψL

l γ
µψL

νl
, Jµ

+ = ψL
νl
γµψL

l e Jµ
em = −ψlγ

µψl = −ψL
l γ

µψL
l − ψR

l γ
µψR

l (21)

onde o sinal negativo em Jµ
em é por conta da carga −1 (em unidades de e) dos léptons carregados.

5.2 Acoplamento minimal e os campos de gauge

Como já dito diversas vezes, o GWS se trata de uma teoria de gauge do SU(2)L⊗U(1)Y , onde
o dubleto em (20) indica claramente o o significado do índice L. Para o SU(2)L , utilizaremos os
geradoresR(Ta) ≡ Ta = σa/2 , ondeσa são as matrizes de Pauli. Dessa forma, pela expressão geral em
(12) temos que as correntes de isospin (fraco) ficam dadas por Jµ

a = ΨLγµTaΨ
L , fornecendo então:

Jµ
1 =

1

2
(Jµ

− + Jµ
+) , Jµ

2 =
i

2
(Jµ

− − Jµ
+) , Jµ

3 =
1

2

(
ψL

νl
γµψL

νl
− ψL

l γ
µψL

l

)
(22)

Vemos que as duas primeiras correntes de isospin acima guardam as correntes carregadas dadas
em (21). Entretanto, observamos que Jµ

3 guarda tanto a componente de esquerda de Jµ
em quanto uma

nova corrente neutra que ainda não tínhamos visto, envolvendo dois espinores de neutrinos.
Quanto aoU(1)Y , o índiceY refere-se ao que chamamos de hipercarga (fraca) e o gerador desse

grupo para o dubleto será dado por Y L = −1 , onde 1 indica a matriz 2×2 identidade, e para o singleto
da equação (20) usaremos Y R = −2 . Com isso, a corrente de hipercarga (fraca) fica dada por:

Jµ
4 = ΨLγµY LΨL +ΨRγµY RΨR = −ψL

νl
γµψL

νl
− ψL

l γ
µψL

l − 2ψR
l γ

µψR
l (23)

Em particular, perceba que a corrente eletromagnética definida em (21) pode ser dada por:

Jµ
em = Jµ

3 +
1

2
Jµ
4 ⇒ Q = T3 +

1

2
Y (24)

de onde obtemos a carga elétrica em função das cargas de isospin e hipercarga (fracos). Essa expressão,
quando aplicada em (20), fornece de fato léptons carregados com carga −1 e neutrinos com carga 0.

16Neutrinos são partículas descarregadas e sem carga de cor e, portanto, não se acoplam nem ao fóton e nem aos glúons.
Logo, eles só interagem pela interação fraca e, nesse contexto, observam-se apenas acoplamentos de neutrinos de esquerda.
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Ainda falta entendermos as correntes neutras que surgiram em (22). Para isso, na verdade, ve-
jamos como ficam os campos introduzidos pela teoria de gauge do SU(2)L ⊗ U(1)Y , e como eles se
relacionam com os nossos W±

µ e Aµ conhecidos da teoria dos BVI e da QED, respectivamente.
Conforme a formulação geral das teorias de gauge para campos de matéria fermiônicos dada na

Seção 2.2, temos a seguinte parcela da Lagrangeana do GWS, L lep , referente aos campos leptônicos
com interação, onde não estamos considerando ainda termos de massa para os campos envolvidos:

L lep = iΨLγµ
(
∂µ + ig

σa
2
W a

µ + i
g′

2
Y LBµ

)
ΨL + iΨRγµ

(
∂µ + i

g′

2
Y RBµ

)
ΨR (25)

onde g e g′ são as constantes de acoplamento de gauge dos léptons aos campos de gauge W a
µ e Bµ .

Por realizar esse acoplamento, esse é um resultado de fundamental importância no Modelo Padrão!
Feito isso, identifiquemos cada um dos termos presentes na expressão acima. Primeiramente, os

termos com as derivadas ∂µ darão origem à uma Lagrangeana livre, L lep,0 , para os léptons envolvidos:

L lep,0 = iΨLγµ∂µΨ
L + iΨRγµ∂µΨ

R = iψL
νl
γµ∂µψ

L
νl
+ iψlγ

µ∂µψl (26)

Agora, vejamos os termos de (25) que envolvem os campos de gauge W 1
µ e W 2

µ que, pela equa-
ção (22), sabemos que guardarão as correntes carregadas da interação fraca. De fato, adiantando que:

W−
µ =

1√
2

(
W 1

µ + iW 2
µ

)
e W+

µ =
1√
2

(
W 1

µ − iW 2
µ

)
(27)

abrindo os termos de (25) que envolvem esses campos e empregando as definições acima obtemos:

LW = −g
2
ΨLγµ

(
σ1W

1
µ + σ2W

2
µ

)
ΨL = − g√

2

(
ψL

l γ
µψL

νl
W−

µ + ψL
νl
γµψL

l W
+
µ

)
(28)

que, comparando com as correntes em (21), vemos se tratar exatamente do termo de interação da teoria
dos BVI! O que precisamos fazer agora é recuperar também o termo de interação da QED, que envolve
a corrente eletromagnética dada em (21) e o campo Aµ . Para isso, abrimos os termos que faltam da
Lagrangeana leptônica (25), que envolvem os campos de gaugeW 3

µ eBµ . No caso, esses dois campos
darão origem ao campo do fóton,Aµ , e a um outro campoZ0

µ (a notação não é coincidência!) dados por:(
Bµ

W 3
µ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
Aµ

Z0
µ

)
com cos θW =

g√
g2 + g′2

(29)

onde o valor de sin θW pode ser deduzido da expressão para cos θW acima, e θW é o chamado ângulo
de Weinberg. Empregando essas definições no termo que falta da Lagrangeana (25) obtemos:

LAZ = −ΨLγµ
(
g

2
σ3W

3
µ +

g′

2
Y LBµ

)
ΨL − g′

2
ΨRγµY RBµΨ

R

= g sin θWψlγ
µψlAµ +

g

2 cos θW

[
ψlγ

µ

(
1− 4 sin2 θW − γ5

2

)
ψl − ψL

νl
γµψL

νl

]
Z0

µ

(30)
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e aqui obtemos alguns resultados muito importantes. Em primeiro lugar, chamando g sin θW = e , o
módulo da carga dos léptons, vemos que o primeiro termo acima é exatamente o termo de interação da
QED! Além disso, observamos também o surgimento de duas correntes neutras para a interação fraca,
uma correspondendo ao processo l → l+Z0 e a outra ao processo νl → νl+Z

0 , ambos envolvendo a
partícula intermediária neutra Z0 ! No caso, vemos que a corrente neutra envolvendo neutrinos possui
a forma V − A , como deveria dado que somente os neutrinos de esquerda se acoplam ao GWS, mas
para a corrente neutra envolvendo os léptons carregados vemos que a forma não é exatamente V −A .

A previsão das correntes neutras para a interação fraca é um resultado de fundamental impor-
tância do modelo GWS, cuja confirmação experimental rendeu o prêmio Nobel em Física aos seus
criadores, em 1979. Depois disso, em 1983, os próprios bósonsW± e Z0 foram observados em expe-
rimentos realizados no CERN (Conseil Européen pour la Recherche Nucléaire) e, pela sua importante
contribuição, Carlo Rubbia e Simon Van der Meer receberam o prêmio Nobel em Física de 1984.

Entretanto, falta ainda um importantíssimo aspecto teórico a ser considerado na formulação
desse modelo: a origem da massa das partículas pelo mecanismo de Higgs, apresentado na Seção 3.2.

5.3 Termos de massa e a Lagrangeana do GWS

No caso do GWS, o mecanismo de Higgs envolverá a introdução do dubleto do SU(2)L :

Φ =

(
ϕ+

ϕ0

)
com LH = (DµΦ)

†(DµΦ) + µ2|Φ|2 − η|Φ|4 (31)

onde apresentamos também a Lagrangeana correspondente já no contexto da teoria de gauge (perceba
que o potencial considerado é, a menos das constantes, o mesmo da equação (14) da Seção 3.1).

Além disso, consideramos os geradores do SU(2)L como Ta = σa/2 e o gerador de hipercarga
(fraca) como Y H = 1 . Com isso, pela equação (24), vemos que a componente superior do dubleto
tem carga +1 (em unidades de e) e a componente inferior carga 0, o que motiva a notação em (31).

Dessa forma, devemos escolher um vácuo de Higgs onde a componente superior do dubleto
seja nula, pois caso contrário o vácuo será carregado eletricamente quebrando assim a simetria eletro-
magnética do modelo GWS, o que não queremos. Portanto, para introduzir a QES conforme discutido
na Seção 3.1, consideramos a seguinte perturbação Φ0

′ a partir de um estado de vácuo descarregado:

Φ0
′ =

1√
2
exp

(
i
σa
2
χa
)( 0

v + ϕ

)
com v =

µ
√
η

(32)

onde v2/2 corresponde ao mínimo do potencial em (31) e χa e ϕ são os 4 graus de liberdade do campo.
Apesar da motivação para a componente superior do dubleto ser nula, a forma escolhida acima

para o nosso vácuo de Higgs ainda pode parecer bastante arbitrária, mas ela não é. Isso por que, como
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vimos, a QES introduz dimG− dimH0 bósons de NG que, no contexto de uma teoria de gauge, são
“absorvidos” pelos campos de gauge, que em razão disso adquirem massa. No vácuo de Higgs acima,
o que nós fizemos foi colocar os bósons de NG na exponencial complexa (eles são os campos χa !) e
temos que eles serão removidos pela seguinte transformação de gauge da perturbação (32):

Φ0
′ → Φ0 = exp

(
−iσa

2
χa
)
Φ0

′ =
1√
2

(
0

v + ϕ

)
(33)

onde sobra apenas um campo real ϕ que corresponde ao bóson de Higgs! No caso, a absorção dos χa

pelos campos de gauge se dá através da transformação desses campos realizada em conjunto com (33).
Feita a QES e removidos os bósons de NG, basta expandir (31) e identificar os termos de massa!

Substituindo a perturbação (33) acima em (31), e chamando a Lagrangeana obtida de LH0 , obtemos:

LH0 =

∣∣∣∣∣
(
∂µ + ig

σa
2
W a

µ + i
g′

2
Y HBµ

)
v + ϕ√

2

(
0

1

)∣∣∣∣∣
2

+ µ2 (v + ϕ)2

2
− η

(v + ϕ)4

4
(34)

onde o módulo ao quadrado acima é a forma abreviada de (DµΦ)
†(DµΦ) . Como podemos ver,

essa Lagrangeana dá origem a diversos termos, todos de enorme importância para o GWS: termos de
auto-interação do campo de Higgs, termos de interação com os campos de gauge, etc. Entretanto, o
que estamos mais interessados aqui são os termos de massa para os campos de gauge, e empregando
as relações (27) e (29) para substituirW a

µ eBµ porW±
µ , Z0

µ eAµ , os termos de massa são obtidos de:

LMWZ
=

∣∣∣∣∣i v

2
√
2

(
g σaW

a
µ + g′Y HBµ

)(0
1

)∣∣∣∣∣
2

=
v2g2

4
W−

µ W
+,µ +

v2g2

8 cos2 θW
Z0

µZ
0 ,µ (35)

onde as massasMW eMZ dos bósonsW± e Z0 podem ser lidas no resultado acima! Além disso, essa
expressão não fornece termo de massa paraAµ . Ou seja, o fóton continua sem massa, como queríamos!

Uma outra massa que podemos retirar dos resultados acima é a massa do próprio bóson de
Higgs. De fato, expandindo-se o potencial em (34), o termo proporcional a ϕ2 que obtemos é −µ2ϕ2 ,
e como ϕ é um campo real concluímos então que a massa do bóson de Higgs vale MH =

√
2µ.

Para finalizar, lembremos que ainda não introduzimos nenhum termo de massa para os léptons.
No caso dos neutrinos, na formulação do modelo GWS essas partículas realmente são consideradas
sem massa, visto que na verdade era isso que se achava até pouco tempo atrás (8) . Entretanto, os
léptons carregados como o elétron certamente têm massa, e elas são sim consideradas no modelo.

A razão de não termos introduzido um termo de massa da formaMl

(
ψR

l ψ
L
l + ψL

l ψ
R
l

)
=Mlψlψl

por exemplo é porque como as componentes de esquerda e de direita dos férmions se acoplam de
maneira distinta no modelo GWS, o termo de massa anterior não é invariante de gauge nessa teoria.

Temos então o mesmo problema obtido com o termo de massa dos campos de gauge, e nova-
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mente a solução será o mecanismo de Higgs! No caso, da mesma forma que se supôs a existência de
um termo de potencial para os campos em Φ, supomos agora a existência de um termo de interação,
chamado de acoplamento de Yukawa, entre os campos em Φ e os campos em ΨL e ΨR, dado por:

LYukawa = −Gl(Ψ
RΦ†ΨL +ΨLΦΨR ) (36)

onde Gl é a constante de acoplamento de Yukawa. Substituindo então a perturbação (33) obtemos:

LYukawa = − Gl√
2

[
ψR

l (v + ϕ)ψL
l + ψL

l (v + ϕ)ψR
l

]
= −vGl√

2
ψlψl −

Gl√
2
ϕψlψl (37)

onde obtemos a massa Ml = vGl/
√
2 para o lépton em questão (onde diferentes constantes Gl darão

diferentes massas para cada l) e um importante termo de interação do mesmo com o bóson de Higgs!

Agrupando tudo o que vimos, a Lagrangeana do modelo GWS no setor dos léptons fica dada por:

LGWS = Lgauge + L lep,0 + LW + LAZ + LH0 + LYukawa (38)

onde Lgauge é o termo próprio dos campos de gauge da teoria, conforme definido em (9) e (11), e os
demais termos acima estão dados nas equações (26) , (28) , (30) , (34) e (37), respectivamente.

Envolvendo ideias e conceitos importantíssimos como os de teorias de gauge não-Abelianas,
quebra espontânea de simetria, violação da paridade, férmions quirais, e muitos outros, o modelo GWS,
responsável por descrever duas das quatro interações fundamentais da Natureza no Modelo Padrão da
Física de Partículas, é um verdadeiro feito na história da Física e, de fato, na história humana. Por
suas importantes contribuições na formulação desse modelo que leva os seus nomes, Sheldon Lee
Glashow, Steven Weinberg e Abdus Salam foram agraciados com o prêmio Nobel em Física de 1979.
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